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Polarization patterns in Kerr media
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We study spatiotemporal pattern formation associated with the polarization degree of freedom of the electric
field amplitude in a mean field model describing a Kerr medium in a cavity with flat mirrors and driven by a
coherent plane-wave field. We consider linearly as well as elliptically polarized driving fields, and situations of
self-focusing and self-defocusing. For the case of self-defocusing and a linearly polarized driving field, there is
a stripe pattern orthogonally polarized to the driving field. Such a pattern changes into a hexagonal pattern for
an elliptically polarized driving field. The range of driving intensities for which the pattern is formed shrinks
to zero with increasing ellipticity. For the case of self-focusing, changing the driving field ellipticity leads from
a linearly polarized hexagonal patte(for linearly polarized driving to a circularly polarized hexagonal
pattern(for circularly polarized drivingy Intermediate situations include a modified Hopf bifurcation at a finite
wave number, leading to a time dependent pattern of deformed hexagons and a codimension 2 Turing-Hopf
instability resulting in an elliptically polarized stationary hexagonal pattern. Our numerical observations of
different spatiotemporal structures are described by appropriate model and amplitude equations.
[S1063-651%98)12608-9

PACS numbgs): 05.45:+hb, 47.54+r, 42.65.Wi, 42.65.5f

[. INTRODUCTION nonlinear passive optical media. For this latter case, new
types of vectorial instabilities have been predicted for cavity
Spatiotemporal patterns in the transverse direction of ahl8] or single feedback mirrdrl9] systems. Several experi-
optical field are now being widely studied theoretically andments in cells with alkaline vapors have been reported either
experimentally[1]. In particular, the nonlinear optical con- without an optical cavity{20,21] or with a single feedback
figuration of a thin slice of Kerr material with a single feed- mirror [22,23. Dynamically evolving patterns produced in a
back mirror analyzed in Ref2] is the basis of many results cell of rubidium vapor with counterpropagating beams have
recently obtained in this field. Studies of optical pattern for-also been studied experimentalB4]. Within this context of
mation share a number of aspects and techniques with gerecent experimental studies, in this paper we address several
eral investigations of pattern formation in other physical sys-aspects of polarization transverse patterns and pattern dy-
tems[ 3], but they also have specific features such as the rolaamics in passive optical systems, presenting a systematic
of light diffraction. A special feature of light patterns comes study of a model system.
from the vectorial degree of freedom associated with the po- Pattern formation in nonlinear cavities for the scalar case
larization of the light electric field amplitude. A vectorial was already considered in Rdi25]. A prototype simple
degree of freedom also appears in recent studies of twanodel which has been very useful for the understanding of
component Bose-Einstein condensatel modeled by pattern formation in this case is a mean field model describ-
coupled nonlinear Schdinger equations. Consideration of ing a Kerr medium in a cavity with flat mirrors and driven by
this degree of freedom opens the way to study a rich variety coherent plane-wave fiel6,27]. This model was ex-
of vectorial spatiotemporal phenomena. However, in manytended in Refs[18,2§ to take into account the polarization
studies of optical pattern formation, this extra degree of freedegrees of freedom. Even if a Kerr material model does not
dom has not been taken into account. Those studies corrgive a faithful description of alkali vapors, it shares with
spond to situations in which a linear polarization of light is them some basic polarization mechanisms of pattern forma-
well stabilized. We will refer to these situations of frozen tion. In addition, the relative simplicity of the model in Ref.
polarization as the “scalar case.” An early study of polar-[18] makes it worthwhile to study it in depth as a general
ization dynamical instabilities in nonlinear optics was doneprototype model for the basic understanding of vectorial pat-
in Ref. [5]. For a review on polarization instabilities and terns. Here we undertake such a study, going beyond the
multistability, see, Ref[6]. Space independent polarization situations already considered in REE8]. The study in Ref.
instabilities have also been studied in lasgfs10. More  [18] was limited to the case in which the driving field is
recently, vectorial patterns associated with polarization instalinearly polarized. Allowing for an elliptically polarized
bilities have been considered in lasgtd—17 as well as in  driving field, as we do here, gives rise to a rich variety of
new phenomena. In addition, the role of elliptically polarized
homogeneous solutions in a number of pattern forming in-
*Permanent address: Center for Nonlinear Phenomena and Coratabilities is discussed in detail. Those solutions already exist
plex Systems, Universiteibre de Bruxelles, Campus Plaine, Bou- in the case of a linearly polarized driving field.
levard du Triomphe Bte Postale 231, 1050 Bruxelles, Belgium. Our study involves a combination of linear stability analy-
TURL: http:/iwww.imedea.uib.es/PhysDept. sis, numerical simulations, and amplitude and model equa-
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tions. Guided by the results of linear stability analysis, we Eos = 14c08 x/2),
search numerically for different spatiotemporal structures. 2
The general features of these structures are then shown to be Eo_ = Tosin(x/2),

described by model and amplitude equations which are jus-
tified by general arguments of symmetry, the form of the

ggialrirl]nsstablllty, and the identification of relevant nonlinear E,. andE,_ are real. This assumption fixes the main axis of
piings. . ) . the ellipse in theX or Y direction. Note thaty==/2 corre-
The paper is organized as follows: In Sec. Il we describe

the model we are considering, its spatially homogeneous Sosponds to linear polarization along theaxis, and that the

lutions, and general properties of the stability analysis ofé”iptidty increases when the value gfis changed from this
’ 9 prop . Y y: value. y=0 (y=m) corresponds to a right-handedeft-
these states. In Sec. Il we consider the case of a linearl

. T g . Kanded circularly polarized input field. Finallyy=—=/2
polarized driving field, while in Sec. IV we discuss the Casecorresponds to linear polarization along tfexis. The in-

of an elliptically polarized driving field. Two particular situ- tensities of the circularly polarized components of the input
ations of this last case are considered in the two fOHOWingr'eld are 1y, =1 ,co2(x12) andly_ =1 osirf(x/2). We note
0+—1'0 0o—-—10 .

sections. Section V is devoted to describing the deforme at the case of a scalar field considered in RE#6,27] is
dynamical hexagons occurring in a modified Hopf bifurca- ormally recovered from Eq(1) for a circularly polarized
tion, and Sec. VI discusses the Turing-Hopf codimension i y q yp

) . : ) .., input. The circular component of the field which is not ex-
bifurcation. A summary of results and their connection with _. . , :
TR . ) ited by the input field decays to zero, and the equation for
related studies is given in Sec. VII. Finally, some genera

concluding remarks are given in Sec. VIl the other component coincides with the one in Ra6é] up
' ' to a rescaling of the field amplitude.
The steady state homogeneous solutions of @&y.are
Il. DESCRIPTION OF THE MODEL, REFERENCE reference states from which transverse patterns emerge as
STEADY STATES, AND STABILITY ANALYSIS they become unstable. These patterns are described in the
following sections for different situations. The steady state

The system we consider is a Fabryrteor ring cavity h uti . he imolici
filled with an isotropic Kerr medium. The cavity is driven by 10mogeneous so utiorts,.. are given by the implicit equa-

an external input field of arbitrary polarization. The situation "
in which the polarization degree of freedom of the electro-
magnetic field is frozen was first considered by Lugiato and
Lefever[26] and Firthet al. [27]. Gedde<et al. [18] gener- E..=E [1—i 7][(1_ E)| o
alized the model of Ref26] to allow for the vector nature of 0 s 2) %=
the field. Their description of this system is given by a pair

of coupled equations for the evolution of the two circularly

polarized components of the field enveldpe andE_, de-  wherel¢. =|Eq.|2. For the intensities we have
fined by

wherel is the intensity of the input field. We consider that

1B
"2

|s:—0”, ()

B
1——

1+ 5 lgr +

Lo =ls+

2
]- 4

This gives a pair of coupled cubic polynomials lig., and
Is_ . Solving forlg, andlg_ leads to a polynomial of degree
For an isotropic medium, the equations are 9 from which it is not possible, in principle, to find an ana-
lytical expression.
For the particular case of linearly polarized input field,
Eq. (4) admits symmetric I, =1s_=1¢) and asymmetric

B
1 | 1+ 5 /1=
Etz—z(EXilEy).

5

5—: =—(1+inH)E.+iaV2E.+Eq. (Is+ #15_) solutions. The symmetric solution corresponds to
linearly polarized output light, while the asymmetric is ellip-
+ig[AlE.|*+(A+B)|E;|?E. , (1) tically polarized. For the symmetric solution E¢) reduces
- - to the single equatiofi29]
where E,.. are the circularly polarized components of the lo/2=11+ (215~ 6)?], )

input field, »=+1(—1) indicates self-focusing (self-
defocusing, 6 is the cavity detuning,a represents the Which gives an implicit formula fofs. As it is well known,
strength of diffraction, an@? is the transverse LaplaciaA.  Eg. (5) implies bistability for 6> 3. We will restrict our
and B are parameters related to the components of the susnalysis to nonbistable regimes, ié< 3. The asymmetric
ceptibility tensor. As here we are considering an isotropicsolution is obtained from the general equati@h This so-
medium,A+B/2=1 (B<2). lution breaks the(+,—) symmetry of the problem and is
The case in whichEy,, =E,_ was considered in Ref. degenerate. There is one solution with >15_, and a sec-
[18], and corresponds to a linearly polarized input field. Hereond equivalent solution in whichg, and l,_ are inter-
we consider an input field with arbitrary ellipticity, defined  changed. The asymmetric solution only exists for values of
as | o greater than a threshold value for which =15_=1'. An
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(v) 1

FIG. 1. Steady state homogeneous solutions, as a function of the 6 (e) ]

input field intensity, for linearly polarized lighiy=90°. The solid SF
line is the symmetric solution. The dashed line corresponds to the | 4f
asymmetric solutions. The two branches of the asymmetric solutiorﬁ+ sl
give the values ofg, andls_ in one of the two degenerate solu- ~*

tions, and they meet the symmetric solution for=1,_=1". Pa- 2y
rameter valuesa=1, B=1.5, andf=1. These parameter values are 1y ] 1y
the same for all the figures, except where otherwise noticed. The 0 ircemee. = 0
quantities plotted in all the figures are dimensionless. 0 I, I,

(d) 1

s—

Is+' {

N =] = (5. =21
T T T T T

example of the symmetric and asymmetric solutions for lin-. _FIG. 2. Stgady ;tate solutioqs for different values of the ellip-

early polarized input is given in Fig. 1. The value Idfis ticity y of the input flel_d. The solid Ilnes_ corres_pc_m_d to the value of

given by ls;, and the dashed lines 1qQ_ . Input field ellipticity valuesi(a)
x=87°, (b) x=78°, (c) x=73°, and(d) x=0°. Note thatl,_=0 in

(d).

o 6(B—2)++6?°B%+4(B—1)

(6) . BR, = _,
4(8_1) &t‘/"i:_ l+|77 G—SiT —iaV ¢i
For circularly polarized input light, for exampje=0, Eq. +i 77§[ ( 1— E (e + 5+ ]?)
(4) reduces to 2 7
B
5 2 RS (Ol A DI ST
lo=lgs{ 1+ 1—§)Is+—0} ] (7)
; R B * 2
i”]E 1_§(¢:+¢:+|‘/f1| )
andl,_=0. Itis clear from Eqgs(5) and(7) that the solution 5
for a circularly polarized input is the same as the symmetric — 1+ S| (et gE DA+ vy), (9
solution for a linearly polarized input, up to a rescaling of the 2T " -
intensities. ith
An elliptically polarized input breaks ther,—) symme- Wit 1
try of the system. The symmetric soluti¢®) found for lin- Isi=§(8i R). (10

early polarized input no longer exists. Instead there is a
single asymmetric solutiofd) which favors the ellipticity of The parameteR measures the deviation from a symmetric
the input field. When the ellipticity of the input field is de- solution vanishing for linearly polarized solutions.

creased, this solution approaches the asymmetric solution It is convenient to make a change of variables to the fol-
obtained for a linearly polarized input. An example of this lowing basis[18]:

homogeneous elliptically polarized solution, obtained from

Eq. (4), is shown in Fig. 2 for various values of the ellipticity o1 Re(, + )
of the input field. This solution favors ., and an equivalent oy Im (s + )
solution favoringl s_ is found when the ellipticity is changed 3= = . 11
from y to 7 y. T3 Re(i —4-)
Basic features of the stability of the steady state homoge- oy Im(fy—o_)

neous solutions can be analyzed by considering the evolution _ _ _
equations for perturbationg.. defined by In this basis, which emphasizes the role of symmetiic (
N =y _) and antisymmetric g, = —_) modes, Eq(9) may
be written as:

E.=Eg:[1+ -] (8)
02 =L+ Ny (2|2)+N3(2|22), (12

From Egs.(1) and(8), we find where the linear matrixin Fourier spaceis
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-1 —n(S—6,) 0 nBR/2
7(3S—6,) ~1 — 7(Bl2—2)R 0
L= , 13
0 7BR/2 ~1 — 7(S— 6y
—37BR/2 0 7(S(1—B)— 6)) ~1
[
Wlth BO’30’4_20'10'2

ak: 0+ nakZ (14) NS(E|E)— ’r]S 30'10'1+0'2(72+(1_B)O’30’3+0’4O’4
5 =

2 BO’20'3_ 20'10'4
The structure of the linear matrix is particularly simple for a 2(1-B) o105~ Bo,o
symmetric solutiorR= 0 [18]: L becomes a matrix with:22 173 274 (17
blocks in which the symmetric and antisymmetric modes are
decoupled. As a consequence, the linear instabilities lead tgispection ofN§(2|z) shows that quadratic nonlinearities,

the growth of either a symmetric or an antisymmetric modeand therefore hexagonal pattern formation, are only expected

(see Sec. Il The eigenvalues of L are for an instability of the symmetric mode. In this case, the
critical modes are linear combinations of the modgsand
A1p= = 1% J(6—39)(S— by, 15 2 andN3(2|3) plays an important role since the first two
components contains products of two unstable modes. Alter-
A34=—1%= (6, +(B—1)S)(S—6y). natively, if an asymmetric mode becomes unstable, the criti-

cal modes are linear combinations ®f and o,. The third
In the general case of elliptically polarized input, the lineargnd fourth components of the vecmﬁ(2|2) contain prod-
unstable modes are not purely symmetric or antisymmetricycts of one stable mode and one unstable mode, but no prod-
The general expression for the four independent eigenvaluggts of two unstable modes. The adiabatic elimination of the

of L are stable modes yields quadratic terms involving two unstable
modes, but these are terms of higher order and can be ne-
Nipss~—1x3Vf* Vha, glected.
For an elliptically polarized solution, there is an addi-
f,=(2B—8)S?—26,(B—6)S—2B(B—1)R*- 462, tional contribution to the quadratic nonlineariys ; we find
(16)
No(S[S)=NSES)+ TBMysls), (8
f,=4(B+2)2S%(S— 6,)° ’ ? 4 mETE
—4B(5B%—16B+20)R?S? where

+126,B(B—2)(B—6)R?S+B2(B+2)?R* My(S[3)

+32BOE(B—2)R% 2Bo 104~ 40,073
The different eigenvalues correspond to the four different 2(4-B)o103+ 40,0,
combinations of plus and minus signs in the square roots. 2Boi0,— 4030,
Replacing the values @& andS the eigenvalues are given as
functions of the steady state intensities andlg_. Their 19
dependence om is implicit in 6,. A given homogeneous

steady state solutionl{, ,Is_) becomes unstable when the Therefore, even for a purely asymmetric unstable mode there
real part of one eigenvalue becomes positive. These instabiljre important quadratic contributions which involve the un-

ties are described in detail in Sec. lll for linearly polarized staple modesdsos, o304, andoyo,), and hexagonal pat-
input, and in Sec. IV for the general case of elliptically po-tern formation is generally expected.

larized input.

The nonlinearities in Eg. (12) include quadratic
[N,(2]2)] and cubic[N3(X|2|3)] terms. The structure of
these terms also gives some general information on the na- In this section we discuss transverse polarization patterns
ture of the instabilities. In particular, if the quadratic nonlin- in the case of a linearly polarized input field, which we take
earity N,(2|2) does not vanish, one expects the formationto be X polarized. We have fountsee Fig. 1 two types of
of hexagonal patterns instead of stripes. In addition, a stahomogeneous steady state solutions: a symmetric solution
tionary instability(which corresponds to a purely real eigen- that is alsoX polarized, and an asymmetric one. The mar-
value becoming positiyeis expected to be subcritical. ginal stability curve for each solution is obtained from the

For the symmetric solutionR=0), the quadratic nonlin- eigenvalues of the matrik given in Egs.(15) and(17).
earity is given by We first consider the stability properties of the solutions

_380'10'1"‘(4_B)O’3(T3_B(O'20'2+ 0'40'4)

Ill. LINEARLY POLARIZED INPUT FIELD
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self-focusing case than for the self-defocusing case. How-
ever, as shown in Fig.(B), for the self-defocusing case the
region of instability IV is now reduced to an island, so that
further above this threshold an homogeneous elliptically po-
larized solution is stable. Given that there is no instability
along the vertical axik=0 in Fig. 3b), the island IV ex-
tends around its minima until it tangentially touches the ver-
tical axis atk=0. If §is decreased, the vertical axis moves to
the left, and the size of the island IV becomes smaller until it
disappears fop=2/B—1.

FIG. 3. Marginal stability curves for linearly polarized input No regions of stability are found abové in Fig. 3(b) for
field as described in the tex@) stability of the symmetric solution  the self-focusing case. The different instability islands and
and (b) stability of symmetric solutioriup to1’) and asymmetric  y5nques found here will turn out to be a useful guide for
solutlon._The dotted line displays the value Idf._The vertical analyzing the stability of the homogeneous solution for an
dashed line separates the self-focusing dé&sé¢he righy from the . . : .
self-defocusing ondef). elliptically po_lanzed input. We recall thqt such_a solution

appears continuously from the asymmetric solution analyzed

with respect to homogeneous perturbations. The symmetrigere. In particular, the instability tongue in the middle, la-
solution becomes unstable for a zero wave number perturb®€led 11, is associated with an eigenvalue with a nonvanish-

(a)

18 +
[ . =)
T T T T T

v

|

N
o[-
o F
IS

|

I

nak?

tion (k=0) for I=1". This is the point where the asymmet- iNg imgginary part, anc_i, therefore, it identifies a possible
ric solution appears. Fdr>1’, the asymmetric solution is HOPpf bifurcation at a finite wave number. _
stable with respect to homogeneous perturbations. It is possible to perform a weakly nonlinear analysis to

Finite wave number perturbations destabilize the symmetpredict the kind of pattern that emerges at threshold. The
ric solution for 1<’ and the asymmetric solution fdr,  Structure of the amplitude equations may be easily obtained
>1"'. In Fig. 3, we plot marginal stability curves fek=1 as  either in the self-focusing or self-defocusing case. In the self-
a function of yak?, so that positive values of this parameter defocusing caséthe negative part of the horizontal axis in
correspond to self-focusing and negative values to selfFig. 3), the homogeneous symmetric solution becomes un-
defocusing. Figure @) shows the marginal stability curve stable forlS.=1/B, and the critical wave number is given by
for the symmetric solutiofil8]. For the symmetric solution, ak?= ¢+ 1—2/B. The instability is stationary and superecriti-
the shape of the marginal stability curves is, in fact, the sameal, and it comes from the;, o, box of the linear matrix
for any value of the detuning. This is because the eigen- in Eq. (13), so that the critical mode is an antisymmetric
values \; given by Eq. (15 depend only ong, and S  mode of zero frequency. As discussed in Sec. Il, this implies
=2lg, so a change in the value #fis equivalent to a dis- that quadratic nonlinearities are not important, and stripe pat-
placement of the origin ofyak? (vertical dashed lineby the  terns are expected. The amplitude equation of the stripe pat-
same amount. The vertical dashed line separating the selfern was presented in Refl18]. Given the antisymmetric
focusing and self-defocusing cases moves to the right if th@ature of the unstable mode, tbepolarized component of
detuning 6 is increased, and it intersects the left corner ofthe field is stable and remains homogeneous, while the stripe
region | for 6= /3 (the value ofé beyond which there is pattern appears in thé-polarized component, which has a
bistability). Since in this paper we are only considering thezero value below the instability. Overall, the electric field
nonbistable regime, the vertical dashed line is always situdisplays an elliptically polarized spatial structure. We remark
ated to the left of region I. that such an instability is of a purely vectorial nature, with no

Figure 3b) shows marginal stability curves for the asym- analog when the polarization degree of freedom is frozen. In
metric solution which merge continuously with the marginalfact, no pattern formation instability occurs in this case for a
curves of the symmetric solution fog<l’. In this case, the self-defocusing medium.
eigenvalues\; given by Eq.(16) depend ong, andS, and In Fig. 4, we give an example of this polarization pattern
also onR. As SandR are related by the steady state solutioninstability [30], showing a sequence of plots {f | for
(4) which depends explicitly o, the shape of the marginal increasing values of the input field. The first plot corresponds
stability curves changes slightly for different valueséof to a situation close to threshold where the stripe pattern

For values ofgin the range B— 1< 6< \/3, the situation emerges. The snapshots shown correspond to long lived tran-
is similar to the case shown in Figs(@@and 3b). The ho-  sient states that evolve to an ordered stripe pattern by defect
mogeneous symmetriginearly polarized solution is stable €volution and annihilation. In the last plot, the input intensity
for low values of the input or the field intensity, and it be- is such that the homogeneous asymmetric state is stable,
comes unstable to finite wave number perturbations for valsince we are outside the island of instability in Fi¢o)3 The
ues ofl <I’. The marginal stability curves for the symmet- System segregates into two phases which correspond to the
ric solution intersect thek=0 vertical axis atls=1', in  two equivalent homogeneous elliptically polarized solutions.
agreement with the analysis of homogeneous perturbationshe evolution of the system at later times is dominated by
mentioned above. This analysis also implies that there is n#1e motion of the interfaces separating the two stable phases.
instability along the vertical axik=0 for the asymmetric For the self-focusing casghe positive part of the hori-
solution Fig. 3b). The analysis of the instability thresholds zontal axis in Fig. 3 the homogeneous symmetric solution
that arise by increasing the input intensity is the same in botlkecomes unstable fdf. =3, with a critical wave number
Figs. 3a) and 3b), with the threshold being lower for the given byak§=2— 0. The instability is also stationary, but it
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FIG. 4. Plots of|[E, |? for increasing values of the intensity of
the linearly polarized input field in the self-defocusing cdse
=—1). From left to right and top to botton¢, =0.8 (1,=1.8),

l+=15 (p=3.1), 1,,=2.6 (1,=5.1), andl,,=3.0 (,=6.0).
Gray scale values: black, 0.1; white, 3.8.

now comes from the;, o, box of the linear matrixt in Eq.
(13) [18]. The critical mode is therefore a symmetric mode.
In this case, quadratic nonlinearities are present, and, as dis- FIG. 5. Plots of[E.. |? for increasing values of the input field in
cussed in Sec. II, one then expects the formation of hexagdbe self-focusing regimé»=1). In this figure the gray scale is
nal patterns via a subcritical bifurcation. Such hexagonal pati©9arithmic. From top to bottor. =0.48 (1,=0.96; black, 0.16;
terns are shown in Fig. 5. The situation corresponds to th¥/nite, 3.9, 1. =0.55 (,=1.1; black, 0.0018; white, 9)8and
case discussed in R4R7], in which the polarization degree 's+=1:7 (0=3.2; black, 0.0028; white, 17
of freedom is not taken into account. The instability leads to
an X-polarized pattern, while th¥-polarized component of !
the field continues to be zero. If the intensity is further in-" " '™ F - .
creased, the hexagonal structure is disarrariayl In this situation is very similar to-the one described be_fore f@ 2/
case, the state of the system is far away from the steady stafel << \/§._Alth_ough region IV is now located in the self-
solution, so the marginal stability plots of Fig. 3 are nofocgsmg_ region, it qus not contribute to th_e instability sce-
longer useful. We observe a spatiotemporal dynamics ifiario, since its minimum valuel.=1/B) is above the
which the intensity of the hexagonal peaks grow, leading tdninima of region I (. =3). So, as the input field intensity
high intensity localized structures placed randomly. Thesds increased, the homogeneous symmetric solution becomes
structures eventually burst, producing circular waves thatnstable forl. =3, with a critical wave number given by
propagate in the transverse plane and dissipate dses ak§=2— 0, and a hexagonal pattern is formed via a subcriti-
Fig. 5. In the two-dimensional self-focusing nonlinear cal bifurcation. For the particular limiting valuB=2, the
Schralinger equation, there is a phenomenon of wave colminimum of the region IV is located at the same value as the
lapse[32]. Collapse is known to be prevented by dissipationminimum of region I. These two instability regions are asso-
[33] or by a saturation nonlinearify32]. In our problem, we ciated with real eigenvalues, so they identify two stationary
have dissipation and a driving field. We have checked thaTuring-like) bifurcations. So, foB=2 and§<2/B—1=0,
the same phenomenon appears when our cubic nonlineariarting from the linearly polarized homogeneous solution, as
is replaced by a saturating nonlinearity. What we then obthe input field is increased the system crosses the two insta-
serve is a strong effect of self-focusing in a situation with nobility thresholds simultaneously. This is a codimension 2 bi-
collapse. furcation involving two stationary modes. The critical mode
We finally consider the range of detuning valugs2/B  associated to region | is symmetric and has a critical wave
—1. In this range, the vertical dashed like 0 is at the left numberak§=2— @, while a critical mode associated with
of the minimum of region IV in Fig. @). In the equivalent region IV is asymmetric and has a critical wave number
of Fig. 3(b) for these values of, the island IV appears to the akgz — 6 [57].
right of the vertical axik=0 and extends around its mini-
mum, located atak?=—6—1+2/B, until it tangentially
touches the vertical axie=0. According to this picture, in
the self-defocusing case the linearly polarized homogeneous In this section we present a general description of the
solution becomes unstable bi=1" to k=0 perturbations, stability analysis of the stationary state when the input field

eading to an elliptically polarized homogeneous solution
with no pattern being formed. In the self-focusing case, the

IV. ELLIPTICALLY POLARIZED INPUT FIELD
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FIG. 7. |E,|? for increasing values of the quasilinearly polar-

FIG. 6. Mal’ginal Stab”lty curves for the same values of the ized input f|e|d(X:87°) in the Self-defocusing Caie;:_l) From
ellipticity y of the input field as in Fig. 2a) x=87°,(b) x=78°,(c)  |eft to right and from top to bottoms.=0.8 (I,=1.8), I,
X=73°, and(d) x=0°. =17 (1,=3.1), 1.,=2.1 (1,=3.8), and |,,=2.3 (1,=4.2).

Gray scale values: black, 0.13; white, 2.6.

is elliptically polarized. Throughout this section, we are con-
sidering a detuning=1. Figure 6 shows, for different input threshold[3,34]. The formation of hexagonal patterns rather
field ellipticities x, the marginal stability curve obtained in- than stripes due to the presence of small ellipticities in the
troducing the stationary solutioi) in Eq. (16) and solving  jnput field has been experimentally observed in rubidium
Re(\)=0. ) S ) ~ vapor[24]. Since the quadratic terms are proportionaRio

For a small input field intensity, when the ellipticity is the range of stability of hexagonal planforms should be pro-
small, the homogeneous solution is close to the symmetrigortional toR? [3,35]. In principle, in this situation, on in-
solution for a linearly polarized input field, so thR<S.  creasing the bifurcation parameténput field intensity,
The eigenvalues of the linear evolution matrix given in Eq. hexagons should become unstable and stripes should be ob-

(17) can be expanded as a seriefRff in the form served[35]. However, due to the small size of the island
0. 1 where the homogeneous solution is unstable, when increas-
Ni=N AR, (200 ing the input field intensity we never found a stripe pattern in

our simulations. Instead, we have a transition back to the

Where)\io are the eigenvalues for the case of the purely lin-elliptically polarized homogeneous state which is stable. In
early polarized input fieldy==/2. Thus the instability Fig. 7, we present a sequence of plot$lf |2 for increasing
thresholds displayed in Fig(® for x=87° are very similar values of the input intensity. Near threshold we have hexa-
to the ones of Fig. @), corresponding to the symmetric so- gons, and, for a large enough intensity, the homogeneous
lution of the linearly polarized input field. For a larger input solution is restored. Different from the case of a linearly
field and small ellipticity, the homogeneous solution is closepolarized input, here there is no competition between two
to the asymmetric solution for a linearly polarized input phases with dominar, or E_, because the small elliptic-
field, and the marginal stability curves shown in FigpiGare ity that we have introduced makes the system choose the
very similar to the ones of Fig.(B). solution with I, >1,_. Since the quadratic nonlinearities

In the self-defocusing cagéhe negative part of the hori- are proportional tdR, the sign ofR should determine if the
zontal axis of Fig. & the size of the instability region of the hexagons are of the 0 ertype[23,35,36. As the dynamical
homogeneous solution is decreased as the ellipticity is inevolution of the perturbationg., and_ is associated with
creased. For a large enough ellipticity, this instability island=R [Eq. (9)], we find the opposite type of hexagons for
disappears, and the elliptically polarized homogeneous solyE , |?> and|E_|2. Changing the ellipticityy to 7— y induces
tion is always stabldsee Figs. @) and &c)]. For small a transition, for a given circularly polarized component of
ellipticity, the critical modes are basically combinations of the field, from one type of hexagons to the other, similarly to
the antisymmetric modes; and o,. Despite smallness of what was reported in Ref23]. We also note that, near
the corrections in the eigenvalues and the eigenvectors, thereshold, the hexagonal pattern looks different if we con-
nonlinear terms in the amplitude equation are modified. Thesider theX or Y components of the field. In Fig. 8, we plot
quadratic termsN,(3|2) now contain products of the two |E,|* and|E,|?, for which we find hexagonal pattern of the
unstable modes throughi ,(2|2) [see Egs(18) and(19)].  “black eye” type. Similar patterns have been observed in
As discussed in Sec. Il, these terms should induce the forchemical systemg37]. Here they arise because of the super-
mation of hexagonal rather than stripe pattefas was the position ofE, andE_ .
case for linear polarization of the input fi¢Jct least close to In the self-focusing casghe positive part of the horizon-
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FIG. 8. |E,|? (left figure: black, 1.2; white, 1)5and|E,|? (right
figure: black, 0; white, 0.58for I, =0.8 (I,=1.8). The values of
the other parameters are the same as in Fig. 7.

tal axis of Fig. 6, and for small ellipticity, the islands and
tongues of instability of the homogeneous solution are ob-
tained continuously from the ones for the asymmetric solu-
tion of linearly polarized input fieldFig. 3b)]. Island | in
Fig. 6(a) corresponds to a stationary instability of the modes
which by continuity go to the symmetric modes whBn
—0. As there are quadratic terms in the amplitude equation, F|G. 9. From left to right and top to bottonfE_ (x,y)|? (near

a hexagonal pattern is formed, similarly to the case of gje|q: plack, 1.1; white, 6.5 |E., (K)|? (far field: white, O; black,
linearly polarized input field. Tongues Il and Il are far away 0.02, |[E_(x,y)|? (near field: black, 0; white, 1)2and |E_(K)|2
from the threshold for instability of the homogeneous Solu- 4 field: white, 0; black, 0.019 The far fields are drawn on loga-
tion, and are plotted in this figure only to display how they yithmic scales. The homogeneous motte=Q) is in the center of

move as we increase the ellipticity. As in the case of lineakne far field plots, and has been eliminated in all figures. Param-
polarization of the input field, tongue Il is associated with aeters:|,=3.92, y=78°, andy=1.

Hopf bifurcation, and tongue Ill with a stationary instability.

Figure @b) shows the marginal stability curve fer=78°.  teract, ending with pure Turing, pure Hopf, or mixed modes,
When the input field intensity is increased starting from zeroaccording to their nonlinear interaction. This case is dis-
we have, as usual, a first instability of the Turing type, wherecyssed in more detail in Sec. VI.

a hexagonal structure emerges. The instability island I is now For y—0, tongue Il disappears, and tongue llI is the only
smaller, and there is a window fag, around 2, where the remaining region of instability. In Fig.(8), we plot the mar-
elliptically polarized homogeneous solution is stable. By fur-ginal stability curve for a right-handed circularly polarized
ther increasing the input field intensity, a second instabilityinput field (y=0). As discussed in Sec. Il, this case is equiva-
appears when the value bf, crosses the instability thresh- |ent to the scalar case, already described in Reg¥§,27.

old of tongue Il. The corresponding eigenvalues of the lineamhe steady state solution given by E@) is the same as the
evolution matrix have nonzero imaginary parts, and cross theymmetric solution for a linearly polarized input, except for
imaginary axis at a finite wave number, so that this instabil-a rescaling of the intensities. After this rescaling, in the self-
ity is a Hopf bifurcation with broken space translational sym-focusing case, the marginal stability curve is also the same as
metry. This situation is discussed in detail in Sec. V. the one for linearly polarized input, and the same patterns are

As we can see from the sequence of plots in Fig. 6, tonguebserved above threshold. In the self-defocusing case, how-
Il moves upward and the tongue Ill downward as the ellip-ever, we do not have any instability of the homogeneous
ticity of the input field is increasety is decreased Beyond  solution. As stated in Sec. llI, for a linearly polarized input
the island of instability I, the patterns that are expected tdield the self-defocusing instability involves the asymmetric
form depend crucially on the relative position of the Hopf modes. Here there is only one relevant component of the

instability (tongue 1) and the stationary instability of tongue field, and there are not enough degrees of freedom for such
lll. When the stationary instability is the first to appear onan instability to occur.

increasing the bifurcation parameter, a steady spatial struc-
tures may be expected. If the Hopf bifurcation is the first to  \, MoDIFIED HOPE BIEURCATION: DEEORMED

appear, however, one should obtain wavy spatiotemporal DYNAMICAL HEXAGONS

structures. If both instabilities are at the same level, one has

a codimension 2 situation, as shown in Figc)&or y=73°. In Fig. 9, we plot the squared absolute valuekaf and
With respect to the situation of Fig(l§, instability tongue Il E_ in the near and far fields for an input field intensity such

has moved upward and to the right, while tongue lll hasthat the value ofi, is slightly above the threshold of the
moved downward, on until the instabilities associated withHopf instability (region 1l) shown in Fig. 6b). We can see
each of the two tongues take place at the same vallig.of  that a distorted hexagonal structure appear&forandE _ .
There is now a large range of values lqf. between the The componen&_ is correlated withE, but has a lower
island | and the two tongues for which the elliptically polar- intensity becausg<90° gives preference t&, . The struc-
ized homogeneous solution is stable. Increasingfrom a  ture has a dynamical evolution as shown in Fig. 10, where
value in this range, the homogeneous state has a codimewe plot four configurations ofE ., |? at different times. In-
sion 2 bifurcation where steady and wavy modes should inspection of the numerical results for the far field indicates
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FIG. 12. Phase of the Hopf modig (see Fig. 11 as a function
of time. The values of the parameters are the same as in Fig. 9. A
period T=3.86 is obtained from the plot.

A basic feature of the dynamical evolution of the pattern can
be understood considering the time evolution of each of
these modes. The amplitude of any of these Hopf modes
|k|=k;, evolves with a fixed frequency. The frequency has
the same absolute value for all these modes but different
OS(g"g;ion (2292-86)& F?r;ole_ltthto ri?ht anfd t:op to bottorti=0, A signs, as indicated in Fig. 11. In Fig. 12, we display, as an
=097, 1=1.93, and=2.90. The values of the parameters are the, , 1y e the phase of the mokie. The frequency obtained
same as in Fig. 9. Gray scale values: a black, 1.1; white, 6.5 from trr)ﬂs plot,5)=1.63, coincidefwith the ?magirsllary part of
the critical eigenvalue associated with the Hopf instability.
Since the numerical results are obtained slightly above the
H:r‘t i* is sclngwated by a triad of three wave vectors with instability threshold, we may hopefully interpret them in the
=Kp, Wnile

- is dominated by the triad with opposite framework of reduced dynamics and amplitude equations for
wave vectors. In addition, we observe that these three wave unstable modes. Let us first recall that we are dealing

vectors are not equivalent, since two of them, which form anyith a Hopf instability with broken translational symmetry.
angle close to 90°, carry a higher spectral power than thehe real part of the most unstable eigenvaligsand ), is

third one. The modes dE ;. with highest intensity are iden- plotted in Fig. 13. These eigenvalues are complex conjugated
tified in Fig. 11. The two equivalent wave vectors are labelegor k=k,, and N Akp)=*iw.

k, andkg, and the third dominant wave vector is labelgd

FIG. 10. Four configurations dE_ |? during one periodl of

The fieldE.. can be projected on the eigenvectors of the

0.0
-0.2F
= -0.4Ff
=
& -0.6}
-0.8}
-1.0
0 3
1/2,
0.0
-0.2F
S -0.4F
=
& -0.6}
FIG. 11. Definition of the unstable Hopf and slaved stationary _osk
modes coupled through quadratic nonlinearities and described by 1o
the dynamical system(30). For asymptotic times, the modes ’ . s
ky, ky, andks, dominate and build the dynamical hexagons de- 0 1 ey 2 3
scribed in the text. The intensity range of these modes obtained “

from simulationssee|E.. (k)|2 in Fig. 9] is from 0.0008(damped

FIG. 13. Real part of most unstable eigenvalnggnd\,. The
static modesto 0.019(brightest Hopf mode

values of the parameters are the same as in Fig. 9.
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linear evolution matrix. and, using Eq(8), may be written  odic regular states of hexagonal symmetry that correspond to

as a two-dimensional standing wave. We will call these states
pulsating hexagons.
E. (=5 Eoi V. (=5 Our system has, however, the following originality. The
£ £* EX, g £ eigenvalue), is real and only slightly negative for the
ol T e T = T modesa, with a wave vector such thék| = k= 2k, (see
E- Es- Es-¢- Es- Fig. 13. As ke=+/2k,, the modesr, may be coupled with
E* EX EX o* Ef pairs of Hopf modesr. with orthogonal wave vectors via

guadratic resonances. Since the modgsare only slightly
damped, one should incorporate them in the order parameter

2 €N (Va01i+ Voot Vaoait Vaosp), dynamics, which then becomes
- :

(21 &t0i=[8—§ﬁ(kﬁ+V2)2iiw]cra_,-f-vooé-f-vlo'ta'o
whereV; are the four eigenvectors, in Fourier space, ang +v05—(1xip)ol o —(y*id)ogo.
are the corresponding amplitudes. The usual procedure of (29

reducing the dynamics to the dynamics of the unstable doo=[p—EX(k2+V?)2]og+v,0,0_+v,05— 0
modes only leads to the adiabatic elimination of the modes
Vao3 andV, o4y, becausev; and\, are stable eigenval-

ues. Taking into account that the eigenvalugsandi; are  wheren <0 is the linear damping of the homogeneous mode
most unstable fok=k;, with |k,| =k, we may write, close [u=\,(ks)]. The kinetic coefficients could be obtained nu-

—Uogo,0_,

to the instability[ 3] merically from Eq.(8). However, this formidable task may
be avoided, since we are mainly interested in generic dy-
E. Eqs namical behaviors, which essentially depend on their signs
£+ £* and orders of magnitude.
| st +2 (Vyoif aikn T +iot Let us look for the possible asymptotic solutions of this
E_ Es_ K h system. Systems described by the dynani®3 have been
E* E* mainly studied in one-dimensional geometries where the re-
- ST sulting patterns correspond to traveling or standing waves
+V202Eheiﬁh.r¥iwt)+m ' (22) [3,41,43. These solutions are recovered here. Effectively,

the uniform amplitude equations for critical unidirectional

. . counterpropagating traveling waves corresponding to the
The amplitudes,oyi =01 (X,T) and o2, =021 (X,T),  modes oq=0, o, =L exp(KyI+iwt)+R*exp(—iky-T+iwt)
only depend on the slow variabléé=c"% andT=¢"1t, and o_=L*exp(—ikyI—iwt)+Rexpikyr—iwt) (K|=kq)
wheree = (I¢, —15,)/15, is the reduced distance to the in- may be deduced from Eq24), and are
stability threshold(we are using ¢, as the bifurcation pa- . . 5 5
rameter, and, is the critical value at the Hopf bifurcatipn L=el—(1+iBL(LI*+2[R%), o5
For each particular pattern, their evolution equations, or am- . :
plitude eq%ations, rr?ay be derived with stan%ard procedures R=&R—(1-iB)R(R*+2IL[?).
[38]. However, it is often convenient instead to study orderrpe nonjinear cross-coupling coefficients of the field equa-
parameter equations of the Swift-Hohenberg type. Thesgqns are twice the self-coupling coefficients. In this situa-

equations reduce to the correct amplitude equations near ﬂfﬁ)n, as in reaction-diffusion systems with scalar couplings

onset of instability but take care of the orientational degen 35], traveling waves are stable structures, whereas standing
eracy of the unstable wave vectors, preserve the correct symy;,es are unstable.

metries of the problem, allow the description of transitions 5 \ve are considering two-dimensional systems, we have
between patterns of different symmetries, and contain rapig}, gy,qy the stability of such waves versus modulations with
spatiotemporal variations which may be important for pattern e vectors pointing in other directions. In the absence of
selection or transient dynamif3,35,39. In the present case, coupling betweenr.. and o, one should obtain pulsating

we consider a model order parameter dynamics of the typenexagons, as in Ref40]. The coupling between oscillatory
o and steadyro modes may modify this picture, however.
do.=[e— &K+ V) *iw]o. vt —(1£ip)od o, Effectively, let us consider the linear stability of a traveling
(23)  wave defined by o_=A exdikyx+y)\2—iwgt], o,
=A*exf —ik, (X+y)/\2 +iwet], with |A]?>=¢ and wo=w
where the subscripts- and — refer to the sign of the fre-  — g which corresponds to a solution of E@®5) with L
quency, so that the complex. are proportional to the wave =0 andR=A€#*!. (The wave vector direction is arbitrary,
packetoy (o) gexplk-r*iot), with |k|=k;,. These equations and we may choose this particular one, anticipating results of
contain quadratic nonlinearities, as discussed in Sec. Il, anthe following discussion. Based on the wave vector defini-
are thus equivalent to the equations describing oscillatoryion of Fig. 11,x andy being the spatial coordinates in the
convection in hydrodynamic systems with no “up-down” plane, the right traveling wave just described corresponds to
symmetry[40]. In this case, the authors obtained monoperi-mode A.) Mode A is quadratically coupled to the modes
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B exdikn(Xx—y)/N2—iwot] and Deks and their complex B, and C may be absorbed in their phases{ ¢
conjugates. Taking o_=A exgik,(x+y)/\2—iwgt] — kX/3). Writing | =R,exp(#,) and defining the total phase
+B exp:ikh(x—y)/\/i— iwot], o.=A*exd—iky (x+y)/\_/§ as® = pp+ Ppg+ pc— 3wt, we finally obtain the following
+iwpt] +B*ex;:[—ikh(x—y)/\/§+iw0t], and oo=De*?Y  equations for uniform amplitudes and phases, up to cubic
+D*e %, the corresponding linearized amplitude equa-nonlinearities:

tions are of the forms

B — 6B+ 0, AD - | dRa=gRa+v1RgRcCOSP — Ry(RA+ yRE+2R3),

. — (26) _
D=(u—ug)D+v,AB*—--- . &Rg=£oRg+v1RaRccOsP — Rg(R3+ yR2+2R2),
The characteristic equation of the corresponding evolution ) 5
matrix is atRC: 81RC+ U]_RARBCOS(I)_ Rc[ RC+ Z(RA+ RB)]’
sP—s[(1+u)e—pl+e(Ue—p)—vw1e=0, (27) _ RsRc
_ dipa=—vg sind+0(B,8,R?),
and the traveling waves are thus unstable for Ra
L (30
=2 (0104 — RAR
e<8c=( (vavst ). (28) dibs=—00 g Ssind+0(8,8,R?),
_ B
If viv, is negative,e,<0, and unidirectional traveling
waves are stable. This is, for example, the case in systems — RaRg . 5
where the order parameter dynamics contains nonlinear cou- dhpc="vo sin®+0(B,6,R%),
plings between the gradients of the fi¢kB]. Alternatively, ¢
if vqv4 IS positive, and we may suppose that this is the case 2, 52
: - - 2RZ+R:
here,s is positive wheru has a sufficiently small absolute 9 ®=—3w—v,——=—sind+0(B,5,R?),
value (we recall thatu<0). Hence unidirectional traveling Rc
waves are unstable versus two-dimensional spatiotemporal
patterns in the range<Os<e.. where eq=g— 2£3(1—\2)%kii=c—0.03&2k2, e,=c—%

We will now try to identify these patterns, taking into 2(1—\/5)2kﬁ:s—0 O?5§ﬁk2 and ;=2+vzv_1/,u From
account the fact that the dyna_1m|c§ favors propagating W"’T\’e%ese equations, it turns out thAtand B are equivalent,
and contains quadratic nonlinearities. Hence, we consider

that the dynamics may be reduced to the dynamics of th&a=Re7Rc and¢,—$g= ¢, whereg is an arbitrary con-

modesA, B, C, andD and their respective complex conju- Stant. We may choose=0 for simplicity.
gates, as defined in Fig. 11. Starting with matlenodesB Except for sufficiently smallo, where system(30) may

and D should be included in the description, becadsés admit fixed point solutions, this system of equations is ex-
unstable versu8 and D. Mode C should also be included peCte‘?' to generate time-periodic solutiong corresponding to
because of the coupling betwearandB. The coupling be- pulsating deformed hexagons. Over a period, the mean value

tween A and B also generates higher harmonics with fre-©f the amplitude of the modea and B should be equal,

S _ . while the mean value of the amplitude & should be
guency—2w (vectorks in Fig. 11), which can be observed in I — :
the far field shown in Fig. 9. However, since the dynamics oSMaller €1<eo, and y<y). In the absence of coupling
these harmonics is slaved to the dynamicAaind B, they ~ With the D mode (1.<0), one should recover the pulsating

are not considered here. The amplitude equations for mod xagons 'found by Brand and Deisdléd]. It !s the pgrticuj
A, B, C, andD obtained from Eq(24), taking into account arity of this system to present a resonant interaction with a
ql’Ja('jraiic nonlinearities between Wa\,/y modes. are slowly evolving stable mode which induces the deformation

of the hexagonal pattern. In generAland B* modes need
I A=A+ 44Ky V)2A+1,DB + v C* B* gl (30t xx) not make a particular angle for their quadrati_c resonance
with a stationary mode. If they make an anglevith the Y
—(1+iB)A[|A|?+2(|B|?>+|C|?)]- (y+i6)A|D|?, axis, they should be coupled with the staBlemode (with
o . ksy= 2k,singy, wherey is the unit vector along th¥ axis)
0B=gB+4&3(ks- V)?B+v,AD* +pC* A* gl (30t in such a way that

—(1+iB)B[|B[*+2(|A[*+[C[*)]—(y+i6)B|D|?,

(29 D () =[ pu—A4E2(K2— 4sirtyk2)2ID () + v AB* +-+- .

HC=5C+AE(Ky-V)2C+uoA* B* glButt 0 @D
—(1+iB)C[|C|?+2(|B|?>+|A|?>)]— (y+io)C|D|?, Hence, the adiabatic elimination of this mode leads to a
renormalized coefficienty which is minimum for siny
D =uD+44(Ky-V)?D+0v,AB* — -+, =k/2k,, The angley is then half of the selected angle be-
tweenA andB* wave vectors. Changing the detunifigthe
where k= (1— J2)k;,. D may be adiabatically eliminated, ratio betweerk, andk;, can be tuned, which then changes the
andD=—v,;AB*/u. The mismatch between the modas distortion of the hexagonal pattern.
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If one now wishes to reconstruct the field from the results of this weakly nonlinear analysis, one obtains fré22)Eqsd
(30), at leading order,

E.\ [Ee
E* EZ, — P
E _ £ 22 (Vlo_lylzhelkh-r+|wt+V20_2’lzhelkh-rflwt)+.“
_ s— K
* *
E* EX

:Vleiwt(A* e—i|22~F+ B* e—ilZ3~F+ C* e—igl-F)+Vze—iwt(Aeilzz~F+ BeilZ3-F+ Ceilzl-F)+ .

=V, elot ZRAcos@e‘i (kpx/\2) ~icp 4 Rceikhx—igc)
V2
. k . LT . —
+V26_th ZRACOShTZel(khx/\Z)+|¢A+ Rce—lkhx+|¢c) deen (32)

From Eq.(30), it may be seen thap, and ¢ are functions ofb. Sincew is finite, close to the instability threshold one may
expand® around 3vt [44], and Eq.(32) becomes

E. Es+
Ei E; Kny 7 Kny 2

- =V,e“!| 2R cos=e | (kD 1 R _glkn* | 4+\,e 19| 2R, cos= gl kD) 4 Re™KnX | +... | (33
E_ E87 1 A \/5 C 2 A \/E C ( )
er] \ex

whereR, and Ry still contain time-dependent contributions the marginal stability curve that there are two different wave

of frequencies ®,6w, ... . Thecorresponding spatiotem- numbers that become unstable at nearly the same value of

poral patterns are thus different from pulsating hexagonsthe control parametds, . Similar situations can be obtained

since, besides their deformation, they are built on a triad ofhanging simultaneously the ellipticity and the detuning. For

traveling waves propagating in tHél, |22, and |23 (or example, forX=_67° and #=0.6 the same type of situation

“K,.—K,, and —K;) directions, leading to what we call occurs(the relation between the two critical wave numbers
1) "2 3 ’ 9 changes but the qualitative results are not affectedFig.

deformed dynamical hexagons. These conclusions are s e plot the unstable eigenvalues and , as functions

qualitative agreement with the numerical results presented i : o
Figs. 9, 10 and 12, which tell us, furthermore, that the eigenBf the wave numberk near the instability threshold for

vectorsV,; andV, should have dominant contributionsiq x=67° and 6=0.6. In the plot ofA, we can see that the

andE_ , respectively. Effectively, it appears that the domi- modesk;, and ks become simultaneously unstable, and, fur-
nant contributions t&c _ come from the modek,, k,, and thermore\ 5(ky) is complex, whilek5(ks) is real. Hence, we

K. with f = hile E. is built th q have a codimension 2 situation where the oscillatory insta-
3 with frequency —o, while £, 1S bullt on the modes bility corresponding to a Hopf bifurcation with broken spa-
ki, k,, andks, with frequencyw.

tial symmetry and the stationary Turing-like instability are

We thus think that the main feature which determines th : .
properties of the patterns presented in Figs. 9 and 10 is tﬁ%lose together. In Fig. 15, we show numerical results for the

fact that a constructive coupling occurs between a neatrl =ar and_ the far f|e_zlds CE* at _three _d|fferer_1t t|me_s during

. ; . ¥he transient following this codimension 2 bifurcation. These
marg'?‘a' stationary mode and “”St‘?‘b'e oscillatory mode esults display the competition between the Hopf and the
Couplings between steady and qscﬂlatory modes h.ave aktatic modes. At short times the Hopf modes dominate, but at
ready been shown to be able to induce subharmonic Hoq ng times a static hexagonal pattern is formed
bifurcations in one-dimensional reaction-diffusion systems in In the vicinity of the codimension two poin'.[ the field
codimension 2 situationg45,46. Here this particular cou- variables may be written as '
pling is allowed by the two-dimensional geometry of the
system, which induces the bifurcation to spatiotemporal pat- E. Es.
terns with deformed hexagonal shape.

E* (S e
— s +2 (V101,12 glkn r+iot
VI. CODIMENSION 2 HOPF AND TURING-LIKE E- Es- Kn n
INSTABILITIES E* E:_

In this section, we consider the situation shown in Figs. o .
2(c) (steady stateand &c) (marginal stability, correspond- +V202,ghe'kh'r*'“")+z Vgaoykse"‘s", (34
ing to an ellipticity y=73° and detuningg=1. We see from ks
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FIG. 14. Real part of unstable eigenvaluesand\,. Param-
eters:1,=10.9, y=67°, andn=1.

where|k,| =k;, and |k =ks are the critical wave numbers _ , _ -
associated with each of the instabilities mentioned before. FIG. 15. Near field |E. (x,y)|*] and far field[|E, (k]|*, on a
This expansion is the generalization of E82) to the codi- logarithmic scalgat three different times for the Turing-Hopf com-
mension 2 situation, where one has to expand the fields opffition. From top to bottom =50 (near field: black, 3.6; white,
all the unstable modes of the problem, including here the-1 far field: white, 0; black, 5810"7), t=700 (near field:

. . . - black, 4.6; white, 5.5; far field: white, 0; black, 2(]10’4), andt
Turing-like unstable mode. The amplitudes, (X,T),  _ 1700 near field: black, 0.6: white, 16: far field: white, 0: black,

az'gh()Z,T) andaoygs()z,T) only depend on the slow variables 0.039. The values of the parameters are the same as in Fig. 14.

7 — 127 _ .1 _

]?i;;he [;rstt)Leemi(e_djceé ?j?sdt;\rr;:Z tot. trl:grgt]ztri?r?;?, \il\rl1est(:1(ka)ilit the Swift-Hohenberg type close to a Turing-like instability.

K c \oo c . y Ins Yn the absence of “up-down” symmetry, as it is the case
threshold u=(Is; —1¢,)/1¢,, where nowl¢, is the critical

| f the bif ; his Turina-like | here, quadratic nonlinear couplings between stationary
value of the bifurcation parameter at this Turing-like Insta-p,, 4 are important. The corresponding dynamical operator

bility; w is positive, contrary to the case discussed in the Secinay then be written, for an arbitrary triad of modes, 8§ (

V] _ _ =1.23)
The structure of the evolution equations for these ampli-

tudes may easily be obtained using the symmetries of the SSHl(Rj):MR1+(Izsl’v))le‘l‘UR; R: —|Ry|?R,
problem[38]. Contrary to the case discussed in Sec. V, in the

present situatiol,<k;,, so that there should be no quadratic —U(|Ry|?+|R3|?)Ry,

couplings between oscillatory hexagonal planforms and

steady modes. In the absence of such resonances,.oscilla_tory 53H2(Rj)=,uRz+ (|2$2. V*)2R2+UR*1< R% _||:g2|2|:g2

and stationary modes are first coupled through cubic nonlin-

earities. For example, the dynamics of a pair of unidirec- —U(|Ry|?+|R3|?R;, (36)
tional counterpropagating traveling waves of amplitudes L

and B, coupled to an arbitrary number of steady modes of g (Rj)=pRs+ (Ksg- V)?Rs+vRT R —|R3|°Rs
amplitudes R; correspond to the following coupled

Ginzburg-Landau and Swift-Hohenberg equations: —U(|Ry|%+|Ry|*)Rs,
ﬁtA=EG,_A(s,A,B)—g(1+id)AEilRi|2, with I251+IZ32+IZS3=5. Since we are dealing with a system
with scalar non linear couplingsy, u, g, andw should be
aB=E% (s,AB)—g(1-id)BY|R[2, (35 larger than one.

Codimension 2 situations have been extensively studied
in one-dimensional reaction-diffusion systems where Turing
and zero-wave number Hopf instability thresholds are close
where. in the absence of mean flow or aroup velocit together[35,45,48. According to the nonlinear couplings

' NN } 92 P 2 Ypetween unstable modes, the resulting patterns may be pure
EGLA(f"é’B):SAHl“L'“)aXA_(1+'B)A(|A| +vIB[%), Turing, pure Hopf, or mixed mode patterns. We are consid-
with Kp||x. 55Hi(Rj) represents the generic evolution terms ofering here two-dimensional geometries and a Hopf bifurca-

aiRi=Esn(R) —WR (|A[*+|B[?),
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tion with finite wave vector. Equation85) and (36) admit o
as steady states pure stripes of amplitygle or hexagonal 100k -
planforms, wherd?; =R, and A=B=0, with o v
= -2| N |
. v+ o2+ 4(1+2u)p o 10 .
0T 2(1v2u) R |
Stripes are unstable versus hexagons gorv?/(u—1)?, N ) ‘ ,
which is expected to be the case here sincis finite and 0 200 400 600 800 1000
u<l. They also admit as asymptotic solutions traveling ¢
waves (of amplitude |A|=|AO|=.\/E, B=0, R=0 or [B| FIG. 16. Time dependence of the amplitudég|? (solid line)
=|Bo|= /e, A=0, R=0) and mixed modes. and|A;|? (dashed ling corresponding to wave numbekg andki,
The stability of hexagonal patterns versus wavy mode®n a logarithmic scale. The amplitudes were calculated integrating
may be studied with the following linearized equations: over a circle of radius or k;, in Fourier space. The plot shows the
. ) ) ) exponential growth of the Hopf modes at short times, the competi-
A=A+ (1+ia)dzA—3g(1+id)|Rg|?A, tion between the modes and the final domination of the static

(37 modes.
#B=eB+(1+ia)d?B—3g(1+id)|Ry|?B.
functions of time. The Hopf modes are seen to grow super-
critically first, but eventually the subcritical Turing modes
grow faster until they overcome the Hopf modes.

The result is that hexagonal planforms are stable for

2(1+2u [v+\/ 2H4(1+2u)u], (38

which is the case to be expected here sianée small andv ] ] ]

finite. In previous sections we have reported a rich phenomenol-
Since we suppose thatis larger than 1, the pure wavy 09y for the broad range of values of the cavity detuning

solutions of Eq.(35) are traveling waves of amplitudge. ~ (2/B—1<6< V3) that we have explored. Here we summa-

The evolution of the steady modBsin the presence of pure 12€ these results, and discuss their connection to other re-

; _ _ _ lated studies. In Sec. Il we revisited the case of linearly
travelin aves = Bo/=0 or |Bg|= A _ > ) ;
=(;/) iIS %ivvevnvby (ol = Ve, [Bd [Bol = Ve, [Adl polarized driving field for self-focusing as well as self-

defocusing situations. For the self-defocusing case there is an
3tRi=(€SHi(Rj)—W8Ri . (39 instability leading to a stripe stationary pattern which is or-

thogonally polarized to the driving fieldl8]. However, in-
Traveling waves are then linearly stableuif-we <0, which  creasing the intensity of the driving field, the pattern disap-
should be the case here. Hence, for the situation discussed fjaars, leading to a final homogeneous elliptically polarized
this section, hexagonal and wave patterns are expected to Bete. The transient dynamics involves the spatial coexistence

VIl. SUMMARY AND DISCUSSION OF RESULTS

simultaneously stable. _ . of two equivalent elliptically polarized homogeneous states
The condition for the existence of mixed hexagon-separated by moving interfaces, like in a process of phase
traveling wave modes is found to be separation dynamidgt7]. Spatial coexistence of domains of

(40) different structures was reported in Ré#8] for a liquid
crystal light valve with rotated feedback loop, while station-
and is not expected to be satisfied in reaction-diffusion dy-ary spatial coexistence of circularly polarized states has been
namics with scalar nonlinear couplings. reported in alkali vapors driven by a linearly polarized field
It is important to note that the Hopf bifurcation is super-in a single mirror systenj22] and in cells without mirrors
critical, while the Turing-like transition to hexagons is sub-[20,21]. For a linearly polarized driving field and a self-
critical. As a result of their supercriticality, wavy patterns focusing situation, there is an instability leading to an hex-
grow first. Although these patterns are linearly stable versuagonal pattern with the same polarization of the driving field
stationary hexagonal planforms, the dynamics of the lattef18]. This is the same process as in a scalar m@2ig27].
present destabilizing quadratic nonlinearities. The result i$Vhen the intensity of the driving field is increased, the hex-
that the hexagonal patterns grow faster and finally take oveagonal pattern is destabiliz¢@1]. We have observed that a
Since steady hexagons are stable versus waves, they shotilaither increase of the driving field intensity leads to a com-
thus be the final pattern, although wave patterns may appeaficated spatiotemporal dynamics with bursting spots that
as transients during the first part of the evolution. This iscreate propagating circular waves. A related phenomenon
indeed what is observed in the numerical simulations of Figwas reported in a model which includes the dynamics of
15: at timet=>50, there is a dominance of Hopf modes with atomic variable$49].
arbitrary orientations with weakly excited Turing modes, as For an elliptically polarized driving fieldSec. I\) and a
clearly seen in the far field. At late times=1700) the Hopf self-defocusing situation, the stripe pattern is converted into
modes have lost the competition, and only Turing modesx hexagonal pattern in each of the two independent vectorial
giving an hexagonal pattern survive. Complicated dynamicatomponents of the electric field. A transition from bright to
competition occurs at intermediate times. In Fig. 16, wedark hexagongor vice versain each of the field components
show the integrated power of Hopf and Turing modes ags obtained by changing the ellipticity of the driving field. In

1+2u>3gw,
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addition, the range of parametdisvity detuning and input of domains in which one of the two modes dominates was
intensity for which a pattern exists shrinks to zero as theobserved[52]. A codimension 2 bifurcation involving a
ellipticity departs from its value for a linearly polarized driv- Turing-like mode and a Hopf mode, but of zero wave num-
ing field. Beyond a certain ellipticity, the homogeneous soder (k,=0), was also recently considered in an optical para-
lution, which now is elliptically polarized, never loses stabil- metric oscillator with saturable lossgs4].

ity. The change from stripes or squares to hexagons for any

finite ellipticity follows from general symmetry consider- VIIl. CONCLUSIONS

ations also made in Reff34] for a Kerr medium with coun-
terpropagating beams. This has been predifi€dl and ob-
served[23] in a Na cell with single feedback mirror. It has
also been invoked as an explanation of the observations i
Ref. [24] for a cell of rubidium vapor in two counterpropa-
gating beams. The transition from bright to dark hexagons b
changing the ellipticity of a driving field was discussed in

In this paper we have presented a systematic analysis of a
prototype vectorial model of pattern formation in nonlinear
optics describing a Kerr medium in a cavity with flat mirrors
Bnd driven by a coherent plane-wave field. We have consid-
ered linearly as well as elliptically polarized driving fields,
Ynd situations of self-focusing and self-defocusing. We have
. N described, by numerical simulations, amplitude and model
Ref. [36] and observed in Ref.23] for Na vapor with & o4y ations, a rich variety of phenomena thgt illustrate the rel-
single feedba.ck.mwror. . . , evance of the polarization degree of freedom in optical spa-

For an elliptically polarized driving field and a self- {,temporal dynamics. In particular, we have shown that this
focusing situation, the field ellipticity is a tuning parameterdegree of freedom allows for new asymmetric homogeneous
that permits one to explore several situations. For a circularly o +ions. induces new instabilities. and changes the basic
polarized driving field the scalar case is recovered, and @ymmetr),/ of the pattern formed be);ond an instability.
circularly polarized hexagonal pattern emerges. Two particu-~ 5 particularly relevant aspect of our results is to show that
Iarlylinteresting cases for intermediate eIIiptic_ity invp]ve dY- the ellipticity of the pump can be used as a tuning parameter,
namical patterns occurring through a Hopf instability at aggjly accessible to the experimentalist, that permits one to
finite wave numbek,,. The first of these instabilities consid- explore different types of pattern forming instabilities. For

ered in Sec. V Iea(_js to a time dependent pattern consisting %fxample, we have shown that by changing the ellipticity we
deformed dynamical hexagons. The Hopf bifurcation isgnq sityations which includé) a modified Hopf bifurcation

modified by a linearly damped stationary made-k,. The 4 5 finite wave number leading to a time dependent pattern

guadratic resonance of thesg two modes gives rise t0 dej deformed hexagons, ariil) a codimension 2 Turing-Hopf
formed hexagons. The spatiotemporal pattern can be dsiapility resulting in an elliptically polarized stationary
scribed by a superposition of a triad kaf Hopf modes, each  pexagonal pattern. Small changes in the ellipticity also
one associated with a traveling wave with the same frézpange the symmetry of the pattern, for example from stripes
guency, but one of them having an amplitude different fromy, hexagons. Another general relevant aspect of our results is
the other two. A second interesting case considered in Segyay the information on two different patterns is encoded in
Vl'is a codimension 2 bifurcation in which a stationary gach of the two independent polarization components, which
Turing-like instability occurs simultaneously with the Hopf are easily separated by a polarizer. From a fundamental point
instability. Now the stationary unstable mode is such thapy yie this opens the possibility to study spatiotemporal
kn>ks, and we do not find quadratic resonance. The trango relations between two different patterns emerging from
sient dynamics involves complicated states with a strongne same physical systefi4]. Correlations between differ-
competition of the Hopf and stationary modes. The final stat@,nt polarization components close to the onset of pattern

is a stationary hexagonal pattern in which the Hopf modegomation in the model of Ref.18] were already studied in
have died. Dynamical patterns and codimension Turing-HopRet. [28].

bifurcations have been considered in related studies. A first We finally mention that vectorial degrees of freedom are

case of dynamical hexagons, in a Kerr medium with counsg important in pattern formation in lasers, where vectorial
terpropagating beams, was discussed34l, but they arise  (gnigical defects of the field amplitude can occur if the
as a secondary pure Hopf instability. Dynamical hexagon$yiational symmetry of the system is not broken by a pump
aris_ing from a codimgnsion 2 situation, for aII_<aIi vapors with fja|q [12,17,55,56 Corresponding phenomena should also
a single feedback mirror, were considered in RE&,51.  eyist in other fields such as two-component Bose-Einstein
The difference from the situations we have found is twofold.condensatefs]. This calls for a further systematic investiga-

First, the codimension 2 situation is different from ours be-tjoy of vectorial spatiotemporal phenomena, for which a

causeks>ky, so that a mixed Turing-Hopf mode occurs nymper of experimental results are becoming available.
through a quadratic resonances. Second, the dynamical pat-

tern of Refs[50,5]] is different from our deformed dynami-
cal hexagons because the Turing-like mode is linearly un-
stable and therefore appears with a large amplitude. In spite We want to acknowledge interesting discussions with Dr.
of these differences, we note that the deformation of hexaM. Santagiustina. We also acknowledge Dr. A. Vicens for a
gons in Ref[51] has an origin similar to ours. The compe- careful reading of the manuscript. This work was supported
tition of unstable Hopf modes and unstable Turing-likeby QSTRUCT (Project No. ERB FMRX-CT96-00%7 Fi-
modes withks>k;, was also considered experimentally in nancial support from DGICYT(Spain, Project No. PB94-
Ref. [48] for a large system. By an appropriate control of 1167, is also acknowledged. M.H. wants to acknowledge fi-
parameters, either of the two types of modes can dominat@ancial support from the FOMEC project 290, Dep. dgida
Close to the codimension 2 situation, the spatial coexistencECEyN, Universidad Nacional de Mar del Plata, Argentina.
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