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Polarization patterns in Kerr media

Miguel Hoyuelos, Pere Colet, Maxi San Miguel, and Daniel Walgraef*
Instituto Mediterráneo de Estudios Avanzados, IMEDEA† ~CSIC-UIB!, Campus Universitat Illes Balears,

E-07071 Palma de Mallorca, Spain
~Received 17 November 1997!

We study spatiotemporal pattern formation associated with the polarization degree of freedom of the electric
field amplitude in a mean field model describing a Kerr medium in a cavity with flat mirrors and driven by a
coherent plane-wave field. We consider linearly as well as elliptically polarized driving fields, and situations of
self-focusing and self-defocusing. For the case of self-defocusing and a linearly polarized driving field, there is
a stripe pattern orthogonally polarized to the driving field. Such a pattern changes into a hexagonal pattern for
an elliptically polarized driving field. The range of driving intensities for which the pattern is formed shrinks
to zero with increasing ellipticity. For the case of self-focusing, changing the driving field ellipticity leads from
a linearly polarized hexagonal pattern~for linearly polarized driving! to a circularly polarized hexagonal
pattern~for circularly polarized driving!. Intermediate situations include a modified Hopf bifurcation at a finite
wave number, leading to a time dependent pattern of deformed hexagons and a codimension 2 Turing-Hopf
instability resulting in an elliptically polarized stationary hexagonal pattern. Our numerical observations of
different spatiotemporal structures are described by appropriate model and amplitude equations.
@S1063-651X~98!12608-9#

PACS number~s!: 05.45.1b, 47.54.1r, 42.65.Wi, 42.65.Sf
a
nd
-
d-
s
or
ge
ys
ro
es
po
l
w

f
ie
n
ee
r
is
n
r-
ne
d
n

st

ew
ity

i-
ther

a
ve

veral
dy-
atic

se

of
rib-
y

n
not
th
ma-
f.
ral
at-
the

is

of
ed
in-
xist

y-
ua-

o
-

.

I. INTRODUCTION

Spatiotemporal patterns in the transverse direction of
optical field are now being widely studied theoretically a
experimentally@1#. In particular, the nonlinear optical con
figuration of a thin slice of Kerr material with a single fee
back mirror analyzed in Ref.@2# is the basis of many result
recently obtained in this field. Studies of optical pattern f
mation share a number of aspects and techniques with
eral investigations of pattern formation in other physical s
tems@3#, but they also have specific features such as the
of light diffraction. A special feature of light patterns com
from the vectorial degree of freedom associated with the
larization of the light electric field amplitude. A vectoria
degree of freedom also appears in recent studies of t
component Bose-Einstein condensates@4# modeled by
coupled nonlinear Schro¨dinger equations. Consideration o
this degree of freedom opens the way to study a rich var
of vectorial spatiotemporal phenomena. However, in ma
studies of optical pattern formation, this extra degree of fr
dom has not been taken into account. Those studies co
spond to situations in which a linear polarization of light
well stabilized. We will refer to these situations of froze
polarization as the ‘‘scalar case.’’ An early study of pola
ization dynamical instabilities in nonlinear optics was do
in Ref. @5#. For a review on polarization instabilities an
multistability, see, Ref.@6#. Space independent polarizatio
instabilities have also been studied in lasers@7–10#. More
recently, vectorial patterns associated with polarization in
bilities have been considered in lasers@11–17# as well as in
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nonlinear passive optical media. For this latter case, n
types of vectorial instabilities have been predicted for cav
@18# or single feedback mirror@19# systems. Several exper
ments in cells with alkaline vapors have been reported ei
without an optical cavity@20,21# or with a single feedback
mirror @22,23#. Dynamically evolving patterns produced in
cell of rubidium vapor with counterpropagating beams ha
also been studied experimentally@24#. Within this context of
recent experimental studies, in this paper we address se
aspects of polarization transverse patterns and pattern
namics in passive optical systems, presenting a system
study of a model system.

Pattern formation in nonlinear cavities for the scalar ca
was already considered in Ref.@25#. A prototype simple
model which has been very useful for the understanding
pattern formation in this case is a mean field model desc
ing a Kerr medium in a cavity with flat mirrors and driven b
a coherent plane-wave field@26,27#. This model was ex-
tended in Refs.@18,28# to take into account the polarizatio
degrees of freedom. Even if a Kerr material model does
give a faithful description of alkali vapors, it shares wi
them some basic polarization mechanisms of pattern for
tion. In addition, the relative simplicity of the model in Re
@18# makes it worthwhile to study it in depth as a gene
prototype model for the basic understanding of vectorial p
terns. Here we undertake such a study, going beyond
situations already considered in Ref.@18#. The study in Ref.
@18# was limited to the case in which the driving field
linearly polarized. Allowing for an elliptically polarized
driving field, as we do here, gives rise to a rich variety
new phenomena. In addition, the role of elliptically polariz
homogeneous solutions in a number of pattern forming
stabilities is discussed in detail. Those solutions already e
in the case of a linearly polarized driving field.

Our study involves a combination of linear stability anal
sis, numerical simulations, and amplitude and model eq

m-
2992 © 1998 The American Physical Society
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PRE 58 2993POLARIZATION PATTERNS IN KERR MEDIA
tions. Guided by the results of linear stability analysis,
search numerically for different spatiotemporal structur
The general features of these structures are then shown
described by model and amplitude equations which are
tified by general arguments of symmetry, the form of t
linear instability, and the identification of relevant nonline
couplings.

The paper is organized as follows: In Sec. II we descr
the model we are considering, its spatially homogeneous
lutions, and general properties of the stability analysis
these states. In Sec. III we consider the case of a line
polarized driving field, while in Sec. IV we discuss the ca
of an elliptically polarized driving field. Two particular situ
ations of this last case are considered in the two follow
sections. Section V is devoted to describing the deform
dynamical hexagons occurring in a modified Hopf bifurc
tion, and Sec. VI discusses the Turing-Hopf codimensio
bifurcation. A summary of results and their connection w
related studies is given in Sec. VII. Finally, some gene
concluding remarks are given in Sec. VIII.

II. DESCRIPTION OF THE MODEL, REFERENCE
STEADY STATES, AND STABILITY ANALYSIS

The system we consider is a Fabry-Pe´rot or ring cavity
filled with an isotropic Kerr medium. The cavity is driven b
an external input field of arbitrary polarization. The situati
in which the polarization degree of freedom of the elect
magnetic field is frozen was first considered by Lugiato a
Lefever @26# and Firthet al. @27#. Geddeset al. @18# gener-
alized the model of Ref.@26# to allow for the vector nature o
the field. Their description of this system is given by a p
of coupled equations for the evolution of the two circula
polarized components of the field envelopeE1 andE2 , de-
fined by

E65
1

A2
~Ex6 iEy!.

For an isotropic medium, the equations are

]E6

]t
52~11 ihu!E61 ia¹2E61E06

1 ih@AuE6u21~A1B!uE7u2#E6 , ~1!

where E06 are the circularly polarized components of t
input field, h511~21! indicates self-focusing ~self-
defocusing!, u is the cavity detuning,a represents the
strength of diffraction, and¹2 is the transverse Laplacian.A
and B are parameters related to the components of the
ceptibility tensor. As here we are considering an isotro
medium,A1B/251 (B<2).

The case in whichE015E02 was considered in Ref
@18#, and corresponds to a linearly polarized input field. H
we consider an input field with arbitrary ellipticityx, defined
as
.
be

s-
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e

E015AI 0cos~x/2!,
~2!

E025AI 0sin~x/2!,

whereI 0 is the intensity of the input field. We consider th
E01 andE02 are real. This assumption fixes the main axis
the ellipse in theX or Y direction. Note thatx5p/2 corre-
sponds to linear polarization along theX axis, and that the
ellipticity increases when the value ofx is changed from this
value. x50 ~x5p! corresponds to a right-handed~left-
handed! circularly polarized input field. Finally,x52p/2
corresponds to linear polarization along theY axis. The in-
tensities of the circularly polarized components of the inp
field are I 015I 0cos2(x/2) and I 025I 0sin2(x/2). We note
that the case of a scalar field considered in Refs.@26,27# is
formally recovered from Eq.~1! for a circularly polarized
input. The circular component of the field which is not e
cited by the input field decays to zero, and the equation
the other component coincides with the one in Ref.@26# up
to a rescaling of the field amplitude.

The steady state homogeneous solutions of Eq.~1! are
reference states from which transverse patterns emerg
they become unstable. These patterns are described in
following sections for different situations. The steady sta
homogeneous solutionsEs6 are given by the implicit equa
tion

E065Es6H 12 ihF S 12
B

2 D I s61S 11
B

2 D I s72uG J , ~3!

whereI s65uEs6u2. For the intensities we have

I 065I s6H 11F S 12
B

2 D I s61S 11
B

2 D I s72uG2J . ~4!

This gives a pair of coupled cubic polynomials inI s1 and
I s2 . Solving forI s1 andI s2 leads to a polynomial of degre
9 from which it is not possible, in principle, to find an an
lytical expression.

For the particular case of linearly polarized input fiel
Eq. ~4! admits symmetric (I s15I s25I s) and asymmetric
(I s1ÞI s2) solutions. The symmetric solution corresponds
linearly polarized output light, while the asymmetric is ellip
tically polarized. For the symmetric solution Eq.~4! reduces
to the single equation@29#

I 0/25I s@11~2I s2u!2#, ~5!

which gives an implicit formula forI s . As it is well known,
Eq. ~5! implies bistability for u.A3. We will restrict our
analysis to nonbistable regimes, i.e.u,A3. The asymmetric
solution is obtained from the general equation~4!. This so-
lution breaks the~1,2! symmetry of the problem and i
degenerate. There is one solution withI s1.I s2 , and a sec-
ond equivalent solution in whichI s1 and I s2 are inter-
changed. The asymmetric solution only exists for values
I 0 greater than a threshold value for whichI s15I s25I 8. An
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2994 PRE 58HOYUELOS, COLET, SAN MIGUEL, AND WALGRAEF
example of the symmetric and asymmetric solutions for
early polarized input is given in Fig. 1. The value ofI 8 is
given by

I 85
u~B22!1Au2B214~B21!

4~B21!
. ~6!

For circularly polarized input light, for examplex50, Eq.
~4! reduces to

I 05I s1H 11F S 12
B

2 D I s12uG2J , ~7!

andI s250. It is clear from Eqs.~5! and~7! that the solution
for a circularly polarized input is the same as the symme
solution for a linearly polarized input, up to a rescaling of t
intensities.

An elliptically polarized input breaks the~1,2! symme-
try of the system. The symmetric solution~5! found for lin-
early polarized input no longer exists. Instead there i
single asymmetric solution~4! which favors the ellipticity of
the input field. When the ellipticity of the input field is de
creased, this solution approaches the asymmetric solu
obtained for a linearly polarized input. An example of th
homogeneous elliptically polarized solution, obtained fro
Eq. ~4!, is shown in Fig. 2 for various values of the ellipticit
of the input field. This solution favorsI s1, and an equivalen
solution favoringI s2 is found when the ellipticity is change
from x to p2x.

Basic features of the stability of the steady state homo
neous solutions can be analyzed by considering the evolu
equations for perturbationsc6 defined by

E65Es6@11c6#. ~8!

From Eqs.~1! and ~8!, we find

FIG. 1. Steady state homogeneous solutions, as a function o
input field intensity, for linearly polarized light,x590°. The solid
line is the symmetric solution. The dashed line corresponds to
asymmetric solutions. The two branches of the asymmetric solu
give the values ofI s1 and I s2 in one of the two degenerate solu
tions, and they meet the symmetric solution forI s15I s25I 8. Pa-
rameter values:a51, B51.5, andu51. These parameter values a
the same for all the figures, except where otherwise noticed.
quantities plotted in all the figures are dimensionless.
-

c

a

on

e-
on

] tc652F11 ihS u2S6
BR

2 D2 ia¹2Gc6

1 ih
S

2F S 12
B

2 D ~c61c6* 1uc6u2!

1S 11
B

2 D ~c71c7* 1uc7u2!G~11c6!

6 ih
R

2F S 12
B

2 D ~c61c6* 1uc6u2!

2S 11
B

2 D ~c71c7* 1uc7u2!G~11c6!, ~9!

with

I s65
1

2
~S6R!. ~10!

The parameterR measures the deviation from a symmet
solution vanishing for linearly polarized solutions.

It is convenient to make a change of variables to the f
lowing basis@18#:

S55
s1

s2

s3

s4

6 55
Re~c11c2!

Im~c11c2!

Re~c12c2!

Im~c12c2!
6 . ~11!

In this basis, which emphasizes the role of symmetric (c1

5c2) and antisymmetric (c152c2) modes, Eq.~9! may
be written as:

] tS5LS1N2~SuS!1N3~SuSuS!, ~12!

where the linear matrix~in Fourier space! is

he

e
n

e

FIG. 2. Steady state solutions for different values of the ell
ticity x of the input field. The solid lines correspond to the value
I s1, and the dashed lines toI s2 . Input field ellipticity values:~a!
x587°, ~b! x578°, ~c! x573°, and~d! x50°. Note thatI s250 in
~d!.
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L5S 21 2h~S2uk! 0 hBR/2

h~3S2uk! 21 2h~B/222!R 0

0 hBR/2 21 2h~S2uk!

23hBR/2 0 h~S~12B!2uk! 21

D , ~13!
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uk5u1hak2. ~14!

The structure of the linear matrix is particularly simple for
symmetric solutionR50 @18#: L becomes a matrix with 232
blocks in which the symmetric and antisymmetric modes
decoupled. As a consequence, the linear instabilities lea
the growth of either a symmetric or an antisymmetric mo
~see Sec. III!. The eigenvaluesl of L are

l1,25216A~uk23S!~S2uk!,
~15!

l3,45216A„uk1~B21!S…~S2uk!.

In the general case of elliptically polarized input, the line
unstable modes are not purely symmetric or antisymme
The general expression for the four independent eigenva
of L are

l1,2,3,45216 1
2
Af 16Af 2,

f 15~2B28!S222uk~B26!S22B~B21!R224uk
2 ,

~16!

f 254~B12!2S2~S2uk!
2

24B~5B2216B120!R2S2

112ukB~B22!~B26!R2S1B2~B12!2R4

132Buk
2~B22!R2.

The different eigenvalues correspond to the four differ
combinations of plus and minus signs in the square ro
Replacing the values ofR andS, the eigenvalues are given a
functions of the steady state intensitiesI s1 and I s2 . Their
dependence onh is implicit in uk . A given homogeneous
steady state solution (I s1 ,I s2) becomes unstable when th
real part of one eigenvalue becomes positive. These insta
ties are described in detail in Sec. III for linearly polariz
input, and in Sec. IV for the general case of elliptically p
larized input.

The nonlinearities in Eq. ~12! include quadratic
@N2(SuS)# and cubic@N3(SuSuS)# terms. The structure o
these terms also gives some general information on the
ture of the instabilities. In particular, if the quadratic nonli
earity N2(SuS) does not vanish, one expects the formati
of hexagonal patterns instead of stripes. In addition, a
tionary instability~which corresponds to a purely real eige
value becoming positive! is expected to be subcritical.

For the symmetric solution (R50), the quadratic nonlin-
earity is given by
e
to
e

r
c.
es

t
s.

ili-

a-

a-

N2
S~SuS!5

hS

2 5
Bs3s422s1s2

3s1s11s2s21~12B!s3s31s4s4

Bs2s322s1s4

2~12B!s1s32Bs2s4

6 .

~17!

Inspection ofN2
S(SuS) shows that quadratic nonlinearitie

and therefore hexagonal pattern formation, are only expe
for an instability of the symmetric mode. In this case, t
critical modes are linear combinations of the modess1 and
s2 , andN2

S(SuS) plays an important role since the first tw
components contains products of two unstable modes. A
natively, if an asymmetric mode becomes unstable, the c
cal modes are linear combinations ofs3 ands4 . The third
and fourth components of the vectorN2

S(SuS) contain prod-
ucts of one stable mode and one unstable mode, but no p
ucts of two unstable modes. The adiabatic elimination of
stable modes yields quadratic terms involving two unsta
modes, but these are terms of higher order and can be
glected.

For an elliptically polarized solution, there is an add
tional contribution to the quadratic nonlinearityN2 ; we find

N2~SuS!5N2
S~SuS!1

hR

4
M2~SuS!, ~18!

where

M2~SuS!

55
2Bs1s424s2s3

2~42B!s1s314s2s4

2Bs1s224s3s4

23Bs1s11~42B!s3s32B~s2s21s4s4!
6 .

~19!

Therefore, even for a purely asymmetric unstable mode th
are important quadratic contributions which involve the u
stable modes (s3s3 , s3s4 , ands4s4), and hexagonal pat
tern formation is generally expected.

III. LINEARLY POLARIZED INPUT FIELD

In this section we discuss transverse polarization patte
in the case of a linearly polarized input field, which we ta
to beX polarized. We have found~see Fig. 1! two types of
homogeneous steady state solutions: a symmetric solu
that is alsoX polarized, and an asymmetric one. The m
ginal stability curve for each solution is obtained from t
eigenvalues of the matrixL given in Eqs.~15! and ~17!.

We first consider the stability properties of the solutio
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with respect to homogeneous perturbations. The symme
solution becomes unstable for a zero wave number pertu
tion (k50) for I s5I 8. This is the point where the asymme
ric solution appears. ForI s.I 8, the asymmetric solution is
stable with respect to homogeneous perturbations.

Finite wave number perturbations destabilize the symm
ric solution for I s,I 8 and the asymmetric solution forI s
.I 8. In Fig. 3, we plot marginal stability curves foru51 as
a function ofhak2, so that positive values of this paramet
correspond to self-focusing and negative values to s
defocusing. Figure 3~a! shows the marginal stability curv
for the symmetric solution@18#. For the symmetric solution
the shape of the marginal stability curves is, in fact, the sa
for any value of the detuningu. This is because the eigen
values l i given by Eq. ~15! depend only onuk and S
52I s , so a change in the value ofu is equivalent to a dis-
placement of the origin ofhak2 ~vertical dashed line! by the
same amount. The vertical dashed line separating the
focusing and self-defocusing cases moves to the right if
detuningu is increased, and it intersects the left corner
region I for u5A3 ~the value ofu beyond which there is
bistability!. Since in this paper we are only considering t
nonbistable regime, the vertical dashed line is always s
ated to the left of region I.

Figure 3~b! shows marginal stability curves for the asym
metric solution which merge continuously with the margin
curves of the symmetric solution forI s,I 8. In this case, the
eigenvaluesl i given by Eq.~16! depend onuk and S, and
also onR. As SandR are related by the steady state soluti
~4! which depends explicitly onu, the shape of the margina
stability curves changes slightly for different values ofu.

For values ofu in the range 2/B21,u,A3, the situation
is similar to the case shown in Figs. 3~a! and 3~b!. The ho-
mogeneous symmetric~linearly polarized! solution is stable
for low values of the input or the field intensity, and it b
comes unstable to finite wave number perturbations for
ues ofI s,I 8. The marginal stability curves for the symme
ric solution intersect thek50 vertical axis atI s5I 8, in
agreement with the analysis of homogeneous perturbat
mentioned above. This analysis also implies that there is
instability along the vertical axisk50 for the asymmetric
solution Fig. 3~b!. The analysis of the instability threshold
that arise by increasing the input intensity is the same in b
Figs. 3~a! and 3~b!, with the threshold being lower for th

FIG. 3. Marginal stability curves for linearly polarized inpu
field as described in the text:~a! stability of the symmetric solution
and ~b! stability of symmetric solution~up to I 8) and asymmetric
solution. The dotted line displays the value ofI 8. The vertical
dashed line separates the self-focusing case~to the right! from the
self-defocusing one~left!.
ric
a-

t-

lf-

e

lf-
e
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-

l

l-

ns
o

th

self-focusing case than for the self-defocusing case. H
ever, as shown in Fig. 3~b!, for the self-defocusing case th
region of instability IV is now reduced to an island, so th
further above this threshold an homogeneous elliptically
larized solution is stable. Given that there is no instabil
along the vertical axisk50 in Fig. 3~b!, the island IV ex-
tends around its minima until it tangentially touches the v
tical axis atk50. If u is decreased, the vertical axis moves
the left, and the size of the island IV becomes smaller unt
disappears foru52/B21.

No regions of stability are found aboveI 8 in Fig. 3~b! for
the self-focusing case. The different instability islands a
tongues found here will turn out to be a useful guide
analyzing the stability of the homogeneous solution for
elliptically polarized input. We recall that such a solutio
appears continuously from the asymmetric solution analy
here. In particular, the instability tongue in the middle, l
beled II, is associated with an eigenvalue with a nonvani
ing imaginary part, and, therefore, it identifies a possi
Hopf bifurcation at a finite wave number.

It is possible to perform a weakly nonlinear analysis
predict the kind of pattern that emerges at threshold. T
structure of the amplitude equations may be easily obtai
either in the self-focusing or self-defocusing case. In the s
defocusing case~the negative part of the horizontal axis
Fig. 3!, the homogeneous symmetric solution becomes
stable forI s6

c 51/B, and the critical wave number is given b
akc

25u1122/B. The instability is stationary and supercrit
cal, and it comes from thes3 ,s4 box of the linear matrixL
in Eq. ~13!, so that the critical mode is an antisymmetr
mode of zero frequency. As discussed in Sec. II, this imp
that quadratic nonlinearities are not important, and stripe p
terns are expected. The amplitude equation of the stripe
tern was presented in Ref.@18#. Given the antisymmetric
nature of the unstable mode, theX-polarized component o
the field is stable and remains homogeneous, while the st
pattern appears in theY-polarized component, which has
zero value below the instability. Overall, the electric fie
displays an elliptically polarized spatial structure. We rema
that such an instability is of a purely vectorial nature, with
analog when the polarization degree of freedom is frozen
fact, no pattern formation instability occurs in this case fo
self-defocusing medium.

In Fig. 4, we give an example of this polarization patte
instability @30#, showing a sequence of plots ofuE1u2 for
increasing values of the input field. The first plot correspon
to a situation close to threshold where the stripe patt
emerges. The snapshots shown correspond to long lived
sient states that evolve to an ordered stripe pattern by de
evolution and annihilation. In the last plot, the input intens
is such that the homogeneous asymmetric state is sta
since we are outside the island of instability in Fig. 3~b!. The
system segregates into two phases which correspond to
two equivalent homogeneous elliptically polarized solutio
The evolution of the system at later times is dominated
the motion of the interfaces separating the two stable pha

For the self-focusing case~the positive part of the hori-
zontal axis in Fig. 3!, the homogeneous symmetric solutio
becomes unstable forI s6

c 5 1
2 , with a critical wave number

given byakc
2522u. The instability is also stationary, but
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PRE 58 2997POLARIZATION PATTERNS IN KERR MEDIA
now comes from thes1 ,s2 box of the linear matrixL in Eq.
~13! @18#. The critical mode is therefore a symmetric mod
In this case, quadratic nonlinearities are present, and, as
cussed in Sec. II, one then expects the formation of hexa
nal patterns via a subcritical bifurcation. Such hexagonal p
terns are shown in Fig. 5. The situation corresponds to
case discussed in Ref.@27#, in which the polarization degre
of freedom is not taken into account. The instability leads
an X-polarized pattern, while theY-polarized component o
the field continues to be zero. If the intensity is further
creased, the hexagonal structure is disarranged@31#. In this
case, the state of the system is far away from the steady
solution, so the marginal stability plots of Fig. 3 are
longer useful. We observe a spatiotemporal dynamics
which the intensity of the hexagonal peaks grow, leading
high intensity localized structures placed randomly. Th
structures eventually burst, producing circular waves t
propagate in the transverse plane and dissipate away~see
Fig. 5!. In the two-dimensional self-focusing nonline
Schrödinger equation, there is a phenomenon of wave c
lapse@32#. Collapse is known to be prevented by dissipati
@33# or by a saturation nonlinearity@32#. In our problem, we
have dissipation and a driving field. We have checked t
the same phenomenon appears when our cubic nonline
is replaced by a saturating nonlinearity. What we then
serve is a strong effect of self-focusing in a situation with
collapse.

We finally consider the range of detuning valuesu<2/B
21. In this range, the vertical dashed linek50 is at the left
of the minimum of region IV in Fig. 3~a!. In the equivalent
of Fig. 3~b! for these values ofu, the island IV appears to th
right of the vertical axisk50 and extends around its min
mum, located atakc

252u2112/B, until it tangentially
touches the vertical axisk50. According to this picture, in
the self-defocusing case the linearly polarized homogene
solution becomes unstable atI s5I 8 to k50 perturbations,

FIG. 4. Plots ofuE1u2 for increasing values of the intensity o
the linearly polarized input field in the self-defocusing case~h
521!. From left to right and top to bottom,I s150.8 (I 051.8),
I s151.5 (I053.1), I s152.6 (I 055.1), and I s153.0 (I056.0).
Gray scale values: black, 0.1; white, 3.8.
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leading to an elliptically polarized homogeneous soluti
with no pattern being formed. In the self-focusing case,
situation is very similar to the one described before for 2B
21,u,A3. Although region IV is now located in the self
focusing region, it does not contribute to the instability sc
nario, since its minimum value (I s6

c 51/B) is above the
minima of region I (I s6

c 5 1
2 ). So, as the input field intensity

is increased, the homogeneous symmetric solution beco
unstable forI s6

c 5 1
2 , with a critical wave number given by

akc
2522u, and a hexagonal pattern is formed via a subcr

cal bifurcation. For the particular limiting valueB52, the
minimum of the region IV is located at the same value as
minimum of region I. These two instability regions are ass
ciated with real eigenvalues, so they identify two stationa
~Turing-like! bifurcations. So, forB52 andu<2/B2150,
starting from the linearly polarized homogeneous solution
the input field is increased the system crosses the two in
bility thresholds simultaneously. This is a codimension 2
furcation involving two stationary modes. The critical mod
associated to region I is symmetric and has a critical w
numberakc

2522u, while a critical mode associated wit
region IV is asymmetric and has a critical wave numb
akc

252u @57#.

IV. ELLIPTICALLY POLARIZED INPUT FIELD

In this section we present a general description of
stability analysis of the stationary state when the input fi

FIG. 5. Plots ofuE1u2 for increasing values of the input field in
the self-focusing regime~h51!. In this figure the gray scale is
logarithmic. From top to bottom,I s150.48 (I 050.96; black, 0.16;
white, 3.5!, I s150.55 (I 051.1; black, 0.0018; white, 9.8! and
I s151.7 (I 053.2; black, 0.0028; white, 17!.
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is elliptically polarized. Throughout this section, we are co
sidering a detuningu51. Figure 6 shows, for different inpu
field ellipticities x, the marginal stability curve obtained in
troducing the stationary solution~4! in Eq. ~16! and solving
Re(l)50.

For a small input field intensity, when the ellipticity i
small, the homogeneous solution is close to the symme
solution for a linearly polarized input field, so thatR!S.
The eigenvaluesl of the linear evolution matrix given in Eq
~17! can be expanded as a series inR2n in the form

l i5l i
01l i

1R2, ~20!

wherel i
0 are the eigenvalues for the case of the purely

early polarized input fieldx5p/2. Thus the instability
thresholds displayed in Fig. 6~a! for x587° are very similar
to the ones of Fig. 3~a!, corresponding to the symmetric so
lution of the linearly polarized input field. For a larger inp
field and small ellipticity, the homogeneous solution is clo
to the asymmetric solution for a linearly polarized inp
field, and the marginal stability curves shown in Fig. 6~a! are
very similar to the ones of Fig. 3~b!.

In the self-defocusing case~the negative part of the hori
zontal axis of Fig. 6!, the size of the instability region of th
homogeneous solution is decreased as the ellipticity is
creased. For a large enough ellipticity, this instability isla
disappears, and the elliptically polarized homogeneous s
tion is always stable@see Figs. 6~b! and 6~c!#. For small
ellipticity, the critical modes are basically combinations
the antisymmetric modess3 and s4 . Despite smallness o
the corrections in the eigenvalues and the eigenvectors
nonlinear terms in the amplitude equation are modified. T
quadratic termsN2(SuS) now contain products of the two
unstable modes throughM2(SuS) @see Eqs.~18! and ~19!#.
As discussed in Sec. II, these terms should induce the
mation of hexagonal rather than stripe patterns~as was the
case for linear polarization of the input field!, at least close to

FIG. 6. Marginal stability curves for the same values of t
ellipticity x of the input field as in Fig. 2:~a! x587°, ~b! x578°, ~c!
x573°, and~d! x50°.
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threshold@3,34#. The formation of hexagonal patterns rath
than stripes due to the presence of small ellipticities in
input field has been experimentally observed in rubidiu
vapor @24#. Since the quadratic terms are proportional toR,
the range of stability of hexagonal planforms should be p
portional toR2 @3,35#. In principle, in this situation, on in-
creasing the bifurcation parameter~input field intensity!,
hexagons should become unstable and stripes should be
served@35#. However, due to the small size of the islan
where the homogeneous solution is unstable, when incr
ing the input field intensity we never found a stripe pattern
our simulations. Instead, we have a transition back to
elliptically polarized homogeneous state which is stable.
Fig. 7, we present a sequence of plots ofuE1u2 for increasing
values of the input intensity. Near threshold we have he
gons, and, for a large enough intensity, the homogene
solution is restored. Different from the case of a linea
polarized input, here there is no competition between t
phases with dominantE1 or E2 , because the small elliptic
ity that we have introduced makes the system choose
solution with I s1.I s2 . Since the quadratic nonlinearitie
are proportional toR, the sign ofR should determine if the
hexagons are of the 0 orp type@23,35,36#. As the dynamical
evolution of the perturbationsc1 andc2 is associated with
6R @Eq. ~9!#, we find the opposite type of hexagons f
uE1u2 anduE2u2. Changing the ellipticityx to p2x induces
a transition, for a given circularly polarized component
the field, from one type of hexagons to the other, similarly
what was reported in Ref.@23#. We also note that, nea
threshold, the hexagonal pattern looks different if we co
sider theX or Y components of the field. In Fig. 8, we plo
uExu2 and uEyu2, for which we find hexagonal pattern of th
‘‘black eye’’ type. Similar patterns have been observed
chemical systems@37#. Here they arise because of the sup
position ofE1 andE2 .

In the self-focusing case~the positive part of the horizon

FIG. 7. uE1u2 for increasing values of the quasilinearly pola
ized input field~x587°! in the self-defocusing case~h521!. From
left to right and from top to bottom,I s150.8 (I 051.8), I s1

51.7 (I 053.1), I s152.1 (I 053.8), and I s152.3 (I 054.2).
Gray scale values: black, 0.13; white, 2.6.
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tal axis of Fig. 6!, and for small ellipticity, the islands an
tongues of instability of the homogeneous solution are
tained continuously from the ones for the asymmetric so
tion of linearly polarized input field@Fig. 3~b!#. Island I in
Fig. 6~a! corresponds to a stationary instability of the mod
which by continuity go to the symmetric modes whenR
→0. As there are quadratic terms in the amplitude equat
a hexagonal pattern is formed, similarly to the case o
linearly polarized input field. Tongues II and III are far awa
from the threshold for instability of the homogeneous so
tion, and are plotted in this figure only to display how th
move as we increase the ellipticity. As in the case of lin
polarization of the input field, tongue II is associated with
Hopf bifurcation, and tongue III with a stationary instabilit

Figure 6~b! shows the marginal stability curve forx578°.
When the input field intensity is increased starting from ze
we have, as usual, a first instability of the Turing type, wh
a hexagonal structure emerges. The instability island I is n
smaller, and there is a window forI s1 around 2, where the
elliptically polarized homogeneous solution is stable. By f
ther increasing the input field intensity, a second instabi
appears when the value ofI s1 crosses the instability thresh
old of tongue II. The corresponding eigenvalues of the lin
evolution matrix have nonzero imaginary parts, and cross
imaginary axis at a finite wave number, so that this insta
ity is a Hopf bifurcation with broken space translational sy
metry. This situation is discussed in detail in Sec. V.

As we can see from the sequence of plots in Fig. 6, ton
II moves upward and the tongue III downward as the ell
ticity of the input field is increased~x is decreased!. Beyond
the island of instability I, the patterns that are expected
form depend crucially on the relative position of the Ho
instability ~tongue II! and the stationary instability of tongu
III. When the stationary instability is the first to appear
increasing the bifurcation parameter, a steady spatial st
tures may be expected. If the Hopf bifurcation is the first
appear, however, one should obtain wavy spatiotemp
structures. If both instabilities are at the same level, one
a codimension 2 situation, as shown in Fig. 6~c! for x573°.
With respect to the situation of Fig. 6~b!, instability tongue II
has moved upward and to the right, while tongue III h
moved downward, on until the instabilities associated w
each of the two tongues take place at the same value ofI s1 .
There is now a large range of values ofI s1 between the
island I and the two tongues for which the elliptically pola
ized homogeneous solution is stable. IncreasingI s1 from a
value in this range, the homogeneous state has a codim
sion 2 bifurcation where steady and wavy modes should

FIG. 8. uExu2 ~left figure: black, 1.2; white, 1.5! anduEyu2 ~right
figure: black, 0; white, 0.58! for I s150.8 (I 051.8). The values of
the other parameters are the same as in Fig. 7.
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teract, ending with pure Turing, pure Hopf, or mixed mod
according to their nonlinear interaction. This case is d
cussed in more detail in Sec. VI.

For x→0, tongue II disappears, and tongue III is the on
remaining region of instability. In Fig. 6~d!, we plot the mar-
ginal stability curve for a right-handed circularly polarize
input field~x50!. As discussed in Sec. II, this case is equiv
lent to the scalar case, already described in Refs.@26,27#.
The steady state solution given by Eq.~7! is the same as the
symmetric solution for a linearly polarized input, except f
a rescaling of the intensities. After this rescaling, in the se
focusing case, the marginal stability curve is also the sam
the one for linearly polarized input, and the same patterns
observed above threshold. In the self-defocusing case, h
ever, we do not have any instability of the homogeneo
solution. As stated in Sec. III, for a linearly polarized inp
field the self-defocusing instability involves the asymmet
modes. Here there is only one relevant component of
field, and there are not enough degrees of freedom for s
an instability to occur.

V. MODIFIED HOPF BIFURCATION: DEFORMED
DYNAMICAL HEXAGONS

In Fig. 9, we plot the squared absolute value ofE1 and
E2 in the near and far fields for an input field intensity su
that the value ofI s1 is slightly above the threshold of th
Hopf instability ~region II! shown in Fig. 6~b!. We can see
that a distorted hexagonal structure appears forE1 andE2 .
The componentE2 is correlated withE1 but has a lower
intensity becausex,90° gives preference toE1 . The struc-
ture has a dynamical evolution as shown in Fig. 10, wh
we plot four configurations ofuE1u2 at different times. In-
spection of the numerical results for the far field indica

FIG. 9. From left to right and top to bottom,uE1(x,y)u2 ~near

field: black, 1.1; white, 6.5!, uE1(kW )u2 ~far field: white, 0; black,

0.02!, uE2(x,y)u2 ~near field: black, 0; white, 1.2!, and uE2(kW )u2

~far field: white, 0; black, 0.019!. The far fields are drawn on loga
rithmic scales. The homogeneous mode (k50) is in the center of
the far field plots, and has been eliminated in all figures. Par
eters:I 053.92,x578°, andh51.
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that E1 is dominated by a triad of three wave vectors w
ukW u5kh , while E2 is dominated by the triad with opposit
wave vectors. In addition, we observe that these three w
vectors are not equivalent, since two of them, which form
angle close to 90°, carry a higher spectral power than
third one. The modes ofE1 with highest intensity are iden
tified in Fig. 11. The two equivalent wave vectors are labe
kW2 andkW3 , and the third dominant wave vector is labeledkW1 .

FIG. 11. Definition of the unstable Hopf and slaved station
modes coupled through quadratic nonlinearities and describe
the dynamical system~30!. For asymptotic times, the mode
k1 , k2 , and k3 , dominate and build the dynamical hexagons d
scribed in the text. The intensity range of these modes obta

from simulations@seeuE1(kW )u2 in Fig. 9# is from 0.0008~damped
static modes! to 0.019~brightest Hopf mode!.

FIG. 10. Four configurations ofuE1u2 during one periodT of
oscillation (T53.86). From left to right and top to bottom,t50,
t50.97, t51.93, andt52.90. The values of the parameters are
same as in Fig. 9. Gray scale values: a black, 1.1; white, 6.5.
ve
n
e

d

A basic feature of the dynamical evolution of the pattern c
be understood considering the time evolution of each
these modes. The amplitude of any of these Hopf mo

ukW u5kh evolves with a fixed frequency. The frequency h
the same absolute value for all these modes but diffe
signs, as indicated in Fig. 11. In Fig. 12, we display, as
example, the phase of the modekW2 . The frequency obtained
from this plot,v51.63, coincides with the imaginary part o
the critical eigenvalue associated with the Hopf instability

Since the numerical results are obtained slightly above
instability threshold, we may hopefully interpret them in th
framework of reduced dynamics and amplitude equations
the unstable modes. Let us first recall that we are dea
with a Hopf instability with broken translational symmetr
The real part of the most unstable eigenvaluesl1 andl2 is
plotted in Fig. 13. These eigenvalues are complex conjuga
for k.kh andl1,2(kh)56 iv.

The fieldE6 can be projected on the eigenvectors of t

y
by

-
d

FIG. 13. Real part of most unstable eigenvaluesl1 andl2 . The
values of the parameters are the same as in Fig. 9.

FIG. 12. Phase of the Hopf modek2 ~see Fig. 11! as a function
of time. The values of the parameters are the same as in Fig.
periodT53.86 is obtained from the plot.
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linear evolution matrixL and, using Eq.~8!, may be written
as

S E1

E1*

E2

E2*
D 5S Es1

Es1*

Es2

Es2*
D 1S Es1c1

Es1* c1*

Es2c2

Es2* c2*
D 5S Es1

Es1*

Es2

Es2*
D

1(
kW

eikW•rW~V1s1,kW1V2s2,kW1V3s3,kW1V4s4,kW !,

~21!

whereVi are the four eigenvectors, in Fourier space, ands i ,kW

are the corresponding amplitudes. The usual procedur
reducing the dynamics to the dynamics of the unsta
modes only leads to the adiabatic elimination of the mo
V3s3,k and V4s4,k , becausel3 and l4 are stable eigenval
ues. Taking into account that the eigenvaluesl1 andl2 are
most unstable forkW5kWh with ukWhu5kh , we may write, close
to the instability@3#

S E1

E1*

E2

E2*
D 5S Es1

Es1*

Es2

Es2*
D 1(

kWh

~V1s1,kWh
eikWh•rW1 ivt

1V2s2,kWh
eikWh•rW2 ivt!1¯ . ~22!

The amplitudes,s1,kWh
5s1,kWh

(XW ,T) and s2,kWh
5s2,kWh

(XW ,T),

only depend on the slow variablesXW 5«1/2rW and T5«21t,
where«5 (I s12I s1

c )/I s1
c is the reduced distance to the in

stability threshold~we are usingI s1 as the bifurcation pa-
rameter, andI s1

c is the critical value at the Hopf bifurcation!.
For each particular pattern, their evolution equations, or a
plitude equations, may be derived with standard procedu
@38#. However, it is often convenient instead to study ord
parameter equations of the Swift-Hohenberg type. Th
equations reduce to the correct amplitude equations nea
onset of instability but take care of the orientational deg
eracy of the unstable wave vectors, preserve the correct s
metries of the problem, allow the description of transitio
between patterns of different symmetries, and contain ra
spatiotemporal variations which may be important for patt
selection or transient dynamics@3,35,39#. In the present case
we consider a model order parameter dynamics of the ty

] ts65@«2jh
2~kh

21¹2!26 iv#s61vs7
2 2~16 ib!s6

2 s7 ,
~23!

where the subscripts1 and 2 refer to the sign of the fre-
quency, so that the complexs6 are proportional to the wave
packets1(2),qWexp(ikW•rW6ivt), with ukW u.kh . These equations
contain quadratic nonlinearities, as discussed in Sec. II,
are thus equivalent to the equations describing oscilla
convection in hydrodynamic systems with no ‘‘up-down
symmetry@40#. In this case, the authors obtained monope
of
le
s

-
es
r
e
he
-
m-
s
id
n

e

nd
ry

-

odic regular states of hexagonal symmetry that correspon
a two-dimensional standing wave. We will call these sta
pulsating hexagons.

Our system has, however, the following originality. Th
eigenvaluel2 is real and only slightly negative for th
modess0 with a wave vector such thatukW u5ks.A2kh ~see
Fig. 13!. As ks.A2kh , the modess0 may be coupled with
pairs of Hopf modess6 with orthogonal wave vectors via
quadratic resonances. Since the modess0 are only slightly
damped, one should incorporate them in the order param
dynamics, which then becomes

] ts65@«2jh
2~kh

21¹2!26 iv#s61v0s7
2 1v1s6s0

1v2s0
22~16 ib!s6

2 s72~g6 id!s0
2s6 ,

~24!
] ts05@m2js

2~ks
21¹2!2#s01 v̄1s1s21 v̄2s0

22s0
3

2us0s1s2 ,

wherem,0 is the linear damping of the homogeneous mo
@m}l2(ks)#. The kinetic coefficients could be obtained n
merically from Eq.~8!. However, this formidable task ma
be avoided, since we are mainly interested in generic
namical behaviors, which essentially depend on their si
and orders of magnitude.

Let us look for the possible asymptotic solutions of th
system. Systems described by the dynamics~23! have been
mainly studied in one-dimensional geometries where the
sulting patterns correspond to traveling or standing wa
@3,41,42#. These solutions are recovered here. Effective
the uniform amplitude equations for critical unidirection
counterpropagating traveling waves corresponding to
modes s050, s15L exp(ikWh•rW1ivt)1R*exp(2ikWh•rW1ivt)
and s25L* exp(2ikWh•rW2ivt)1Rexp(ikWh•rW2ivt) (ukWhu5kh)
may be deduced from Eq.~24!, and are

L̇5«L2~11 ib!L~ uLu212uRu2!,
~25!

Ṙ5«R2~12 ib!R~ uRu212uLu2!.

The nonlinear cross-coupling coefficients of the field eq
tions are twice the self-coupling coefficients. In this situ
tion, as in reaction-diffusion systems with scalar couplin
@35#, traveling waves are stable structures, whereas stan
waves are unstable.

As we are considering two-dimensional systems, we h
to study the stability of such waves versus modulations w
wave vectors pointing in other directions. In the absence
coupling betweens6 and s0 , one should obtain pulsating
hexagons, as in Ref.@40#. The coupling between oscillator
s6 and steadys0 modes may modify this picture, howeve
Effectively, let us consider the linear stability of a travelin
wave defined by s25A exp@ikh(x1y)/A22 iv0t#, s1

5A* exp@2ikh (x1y)/A2 1 iv0t#, with uAu25« and v05v
2b«, which corresponds to a solution of Eq.~25! with L
50 andR5Aeib«t. ~The wave vector direction is arbitrary
and we may choose this particular one, anticipating result
the following discussion. Based on the wave vector defi
tion of Fig. 11,x and y being the spatial coordinates in th
plane, the right traveling wave just described correspond
mode A.! Mode A is quadratically coupled to the mode
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B exp@ikh(x2y)/A22 iv0t# and Deiksy and their complex
conjugates. Taking s25A exp@ikh(x1y)/A22 iv0t#
1B exp@ikh(x2y)/A22 iv0t#, s15A* exp@2ikh (x1y)/A2
1 iv0t] 1B* exp@2ikh(x2y)/A21 iv0t#, and s05Deiksy

1D* e2 iksy, the corresponding linearized amplitude equ
tions are of the forms

Ḃ52«B1v1AD* 2¯ ,
~26!

Ḋ5~m2u«!D1 v̄1AB* 2¯ .

The characteristic equation of the corresponding evolu
matrix is

s22s@~11u!«2m#1«~u«2m!2v1v̄1«50, ~27!

and the traveling waves are thus unstable for

«,«c5
1

u
~v1v̄11m!. ~28!

If v1v̄1 is negative, «c,0, and unidirectional traveling
waves are stable. This is, for example, the case in syst
where the order parameter dynamics contains nonlinear
plings between the gradients of the field@43#. Alternatively,
if v1v̄1 is positive, and we may suppose that this is the c
here,«c is positive whenm has a sufficiently small absolut
value ~we recall thatm,0!. Hence unidirectional traveling
waves are unstable versus two-dimensional spatiotemp
patterns in the range 0,«,«c .

We will now try to identify these patterns, taking int
account the fact that the dynamics favors propagating wa
and contains quadratic nonlinearities. Hence, we cons
that the dynamics may be reduced to the dynamics of
modesA, B, C, andD and their respective complex conju
gates, as defined in Fig. 11. Starting with modeA, modesB
and D should be included in the description, becauseA is
unstable versusB and D. Mode C should also be included
because of the coupling betweenA andB. The coupling be-
tween A and B also generates higher harmonics with fr
quency22v ~vectorkW5 in Fig. 11!, which can be observed in
the far field shown in Fig. 9. However, since the dynamics
these harmonics is slaved to the dynamics ofA andB, they
are not considered here. The amplitude equations for mo
A, B, C, andD obtained from Eq.~24!, taking into account
quadratic nonlinearities between wavy modes, are

] tA5«A14jh
2~kW2•¹W !2A1v1DB1v0C* B* ei ~3vt1kx!

2~11 ib!A@ uAu212~ uBu21uCu2!#2~g1 id!AuDu2,

] tB5«B14jh
2~kW3•¹W !2B1v1AD* 1v0C* A* ei ~3vt1kx!

2~11 ib!B@ uBu212~ uAu21uCu2!#2~g1 id!BuDu2,
~29!

] tC5«C14jh
2~kW1•¹W !2C1v0A* B* ei ~3vt1kx!

2~11 ib!C@ uCu212~ uBu21uAu2!#2~g1 is!CuDu2,

] tD5mD14js
2~kW4•“

W !2D1 v̄1AB* 2•••,

where k5(12A2)kh. D may be adiabatically eliminated
and D.2 v̄1AB* /m. The mismatch between the modesA,
-
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B, and C may be absorbed in their phases (f i→f̄ i
2kx/3). Writing I 5RIexp(fI) and defining the total phas
as F5f̄A1f̄B1f̄C23vt, we finally obtain the following
equations for uniform amplitudes and phases, up to cu
nonlinearities:

] tRA5«0RA1v1RBRCcosF2RA~RA
21ḡRB

212RC
2 !,

] tRB5«0RB1v1RARCcosF2RB~RB
21ḡRA

212RC
2 !,

] tRC5«1RC1v1RARBcosF2RC@RC
2 12~RA

21RB
2 !#,

] tf̄A52v0

RBRC

RA
sinF1O~b,d,R2!,

~30!

] tf̄B52v0

RARC

RB
sinF1O~b,d,R2!,

] tf̄C52v0

RARB

RC
sinF1O~b,d,R2!,

] tF523v2v1

2RC
2 1RA

2

RC
sinF1O~b,d,R2!,

where «05«2 2
9 jh

2(12A2)2kh
4.«20.038jh

2kh
2, «15«2 4

9

jh
2(12A2)2kh

4.«20.075jh
2kh

2, and ḡ521v2v̄1/m. From
these equations, it turns out thatA and B are equivalent,
RA5RBÞRC andf̄A2f̄B5w, wherew is an arbitrary con-
stant. We may choosew50 for simplicity.

Except for sufficiently smallv, where system~30! may
admit fixed point solutions, this system of equations is e
pected to generate time-periodic solutions correspondin
pulsating deformed hexagons. Over a period, the mean v
of the amplitude of the modesA and B should be equal,
while the mean value of the amplitude ofC should be
smaller («1,«0 , and ḡ,g). In the absence of coupling
with the D mode ~m!0!, one should recover the pulsatin
hexagons found by Brand and Deissler@40#. It is the particu-
larity of this system to present a resonant interaction wit
slowly evolving stable mode which induces the deformat
of the hexagonal pattern. In general,A andB* modes need
not make a particular angle for their quadratic resona
with a stationary mode. If they make an anglec with the Y
axis, they should be coupled with the stableD mode ~with
ksŷ52khsincŷ, whereŷ is the unit vector along theY axis!
in such a way that

] tD~c!5@m24js
2~ks

224sin2ckh
2!2#D~c!1 v̄1AB* 1¯ .

~31!

Hence, the adiabatic elimination of this mode leads to
renormalized coefficientḡ which is minimum for sinc
5ks/2kh , The anglec is then half of the selected angle b
tweenA andB* wave vectors. Changing the detuningu, the
ratio betweenks andkh can be tuned, which then changes t
distortion of the hexagonal pattern.
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If one now wishes to reconstruct the field from the results of this weakly nonlinear analysis, one obtains from Eqs.~22! and
~30!, at leading order,

S E1

E1*

E2

E2*
D 2S Es1

Es1*

Es2

Es2*
D 5(

kWh

~V1s1,kWh
eikWh•rW1 ivt1V2s2,kWh

eikWh•rW2 ivt!1¯

5V1eivt~A* e2 ikW2•rW1B* e2 ikW3•rW1C* e2 ikW1•rW!1V2e2 ivt~AeikW2•rW1BeikW3•rW1CeikW1•rW!1•••

5V1eivtS 2RAcos
khy

A2
e2 i ~khx/A2! 2 i f̄A1RCeikhx2 i f̄CD

1V2e2 ivtS 2RAcos
khy

A2
ei ~khx/A2! 1 i f̄A1RCe2 ikhx1 i f̄CD 1¯ . ~32!

From Eq.~30!, it may be seen thatf̄A andf̄C are functions ofF. Sincev is finite, close to the instability threshold one ma
expandF around 3vt @44#, and Eq.~32! becomes

S E1

E1*

E2

E2*
D 2S Es1

Es1*

Es2

Es2*
D 5V1eivtS 2RAcos

khy

A2
e2 i ~khx/A2!1RCeikhxD 1V2e2 ivtS 2RAcos

khy

A2
ei ~khx/A2!1RCe2 ikhxD 1¯ , ~33!
s
-
n
o

ll
e
d
en

i-

th
t

ar
e
a

o
i

he
a

gs

ve
e of
d
or

n
rs

r

r-

ta-
a-
re
the

se
the
t at

d

whereRA andRB still contain time-dependent contribution
of frequencies 3v,6v, . . . . Thecorresponding spatiotem
poral patterns are thus different from pulsating hexago
since, besides their deformation, they are built on a triad
traveling waves propagating in thekW1 , kW2 , and kW3 ~or
2kW1 ,2kW2 , and 2kW3) directions, leading to what we ca
deformed dynamical hexagons. These conclusions ar
qualitative agreement with the numerical results presente
Figs. 9, 10 and 12, which tell us, furthermore, that the eig
vectorsV1 andV2 should have dominant contributions toE1

andE2 , respectively. Effectively, it appears that the dom
nant contributions toE2 come from the modesk1 , k2 , and
k3 with frequency 2v, while E1 is built on the modes
k1 , k2 , andk3 , with frequencyv.

We thus think that the main feature which determines
properties of the patterns presented in Figs. 9 and 10 is
fact that a constructive coupling occurs between a ne
marginal stationary mode and unstable oscillatory mod
Couplings between steady and oscillatory modes have
ready been shown to be able to induce subharmonic H
bifurcations in one-dimensional reaction-diffusion systems
codimension 2 situations@45,46#. Here this particular cou-
pling is allowed by the two-dimensional geometry of t
system, which induces the bifurcation to spatiotemporal p
terns with deformed hexagonal shape.

VI. CODIMENSION 2 HOPF AND TURING-LIKE
INSTABILITIES

In this section, we consider the situation shown in Fi
2~c! ~steady state! and 6~c! ~marginal stability!, correspond-
ing to an ellipticityx573° and detuningu51. We see from
s,
f

in
in
-

e
he
ly
s.
l-

pf
n

t-

.

the marginal stability curve that there are two different wa
numbers that become unstable at nearly the same valu
the control parameterI s1 . Similar situations can be obtaine
changing simultaneously the ellipticity and the detuning. F
example, forx567° andu50.6 the same type of situatio
occurs~the relation between the two critical wave numbe
changes but the qualitative results are not affected!. In Fig.
14, we plot the unstable eigenvaluesl1 andl2 as functions
of the wave numberk near the instability threshold fo
x567° andu50.6. In the plot ofl2 we can see that the
modeskh andks become simultaneously unstable, and, fu
thermore,l2(kh) is complex, whilel2(ks) is real. Hence, we
have a codimension 2 situation where the oscillatory ins
bility corresponding to a Hopf bifurcation with broken sp
tial symmetry and the stationary Turing-like instability a
close together. In Fig. 15, we show numerical results for
near and the far fields ofE1 at three different times during
the transient following this codimension 2 bifurcation. The
results display the competition between the Hopf and
static modes. At short times the Hopf modes dominate, bu
long times a static hexagonal pattern is formed.

In the vicinity of the codimension two point, the fiel
variables may be written as

S E1

E1*

E2

E2*
D 5S Es1

Es1*

Es2

Es2*
D 1(

kWh

~V1s1,kWh
eikWh•rW1 ivt

1V2s2,kWh
eikWh•rW2 ivt!1(

kWs

V3s0,ks
eikWs•rW, ~34!
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where ukWhu5kh and ukW su5ks are the critical wave number
associated with each of the instabilities mentioned befo
This expansion is the generalization of Eq.~22! to the codi-
mension 2 situation, where one has to expand the fields
all the unstable modes of the problem, including here
Turing-like unstable mode. The amplitudess1,kWh

(XW ,T),

s2,kWh
(XW ,T) ands0,kWs

(XW ,T) only depend on the slow variable

of the problemXW 5«1/2xW andT5«21t. Furthermore, we de
fine m as the reduced distance to the stationary instab
threshold@m5(I s12I s1

c )/I s1
c , where nowI s1

c is the critical
value of the bifurcation parameter at this Turing-like ins
bility; m is positive, contrary to the case discussed in the S
V.#

The structure of the evolution equations for these am
tudes may easily be obtained using the symmetries of
problem@38#. Contrary to the case discussed in Sec. V, in
present situationks,kh, so that there should be no quadra
couplings between oscillatory hexagonal planforms a
steady modes. In the absence of such resonances, oscill
and stationary modes are first coupled through cubic non
earities. For example, the dynamics of a pair of unidir
tional counterpropagating traveling waves of amplitudesA
and B, coupled to an arbitrary number of steady modes
amplitudes Ri correspond to the following couple
Ginzburg-Landau and Swift-Hohenberg equations:

] tA5EGLA
~«,A,B!2g~11 id !AS i uRi u2,

] tB5EGLB
* ~«,A,B!2g~12 id !BS i uRi u2, ~35!

] tRi5ESHi
~Rj !2wRi~ uAu21uBu2!,

where, in the absence of mean flow or group veloc
EGLA

(«,A,B)5«A1(11 ia)]x
2A2(11 ib)A(uAu21guBu2),

with kWhi x̂. ESHi
(Rj ) represents the generic evolution terms

FIG. 14. Real part of unstable eigenvaluesl1 and l2 . Param-
eters:I 0510.9,x567°, andh51.
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the Swift-Hohenberg type close to a Turing-like instabilit
In the absence of ‘‘up-down’’ symmetry, as it is the ca
here, quadratic nonlinear couplings between station
modes are important. The corresponding dynamical oper
may then be written, for an arbitrary triad of modes, as (i , j
51,2,3)

ESH1
~Rj !5mR11~kW s1•¹W !2R11vR2* R3* 2uR1u2R1

2u~ uR2u21uR3u2!R1 ,

ESH2
~Rj !5mR21~kW s2•¹W !2R21vR1* R3* 2uR2u2R2

2u~ uR1u21uR3u2!R2 , ~36!

ESH3
~Rj !5mR31~kW s3•¹W !2R31vR1* R3* 2uR3u2R3

2u~ uR2u21uR1u2!R3 ,

with kW s11kW s21kW s350W. Since we are dealing with a syste
with scalar non linear couplings,g, u, g, and w should be
larger than one.

Codimension 2 situations have been extensively stud
in one-dimensional reaction-diffusion systems where Tur
and zero-wave number Hopf instability thresholds are cl
together @35,45,46#. According to the nonlinear coupling
between unstable modes, the resulting patterns may be
Turing, pure Hopf, or mixed mode patterns. We are cons
ering here two-dimensional geometries and a Hopf bifur

FIG. 15. Near field@ uE1(x,y)u2# and far field@ uE1(kW #u2, on a
logarithmic scale! at three different times for the Turing-Hopf com
petition. From top to bottom,t550 ~near field: black, 3.6; white,
7.1; far field: white, 0; black, 5.331024), t5700 ~near field:
black, 4.6; white, 5.5; far field: white, 0; black, 2.131024), and t
51700 ~near field: black, 0.6; white, 16; far field: white, 0; blac
0.039!. The values of the parameters are the same as in Fig. 1
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tion with finite wave vector. Equations~35! and ~36! admit
as steady states pure stripes of amplitudeAm or hexagonal
planforms, whereRi5R0 andA5B50, with

R05
v1Av214~112u!m

2~112u!
.

Stripes are unstable versus hexagons form,v2/(u21)2,
which is expected to be the case here sincev is finite and
m!1. They also admit as asymptotic solutions traveli
waves ~of amplitude uAu5uA0u5A«, B50, R50 or uBu
5uB0u5A«, A50, R50) and mixed modes.

The stability of hexagonal patterns versus wavy mo
may be studied with the following linearized equations:

] tA5«A1~11 ia!]x
2A23g~11 id !uR0u2A,

~37!
] tB5«B1~11 ia!]x

2B23g~11 id !uR0u2B.

The result is that hexagonal planforms are stable for

«,
3g

2~112u!
@v1Av214~112u!m#, ~38!

which is the case to be expected here since« is small andv
finite.

Since we suppose thatg is larger than 1, the pure wav
solutions of Eq.~35! are traveling waves of amplitudeA«.
The evolution of the steady modesRi in the presence of pure
traveling waves (uA0u5A«, uB0u50 or uB0u5A«, uA0u
50) is given by

] tRi5ESHi
~Rj !2w«Ri . ~39!

Traveling waves are then linearly stable ifm2w«,0, which
should be the case here. Hence, for the situation discuss
this section, hexagonal and wave patterns are expected
simultaneously stable.

The condition for the existence of mixed hexago
traveling wave modes is found to be

112u.3gw, ~40!

and is not expected to be satisfied in reaction-diffusion
namics with scalar nonlinear couplings.

It is important to note that the Hopf bifurcation is supe
critical, while the Turing-like transition to hexagons is su
critical. As a result of their supercriticality, wavy pattern
grow first. Although these patterns are linearly stable ver
stationary hexagonal planforms, the dynamics of the la
present destabilizing quadratic nonlinearities. The resul
that the hexagonal patterns grow faster and finally take o
Since steady hexagons are stable versus waves, they s
thus be the final pattern, although wave patterns may ap
as transients during the first part of the evolution. This
indeed what is observed in the numerical simulations of F
15: at timet550, there is a dominance of Hopf modes wi
arbitrary orientations with weakly excited Turing modes,
clearly seen in the far field. At late times (t51700) the Hopf
modes have lost the competition, and only Turing mod
giving an hexagonal pattern survive. Complicated dynam
competition occurs at intermediate times. In Fig. 16,
show the integrated power of Hopf and Turing modes
s

in
be
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s
r
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uld
ar
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s
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functions of time. The Hopf modes are seen to grow sup
critically first, but eventually the subcritical Turing mode
grow faster until they overcome the Hopf modes.

VII. SUMMARY AND DISCUSSION OF RESULTS

In previous sections we have reported a rich phenome
ogy for the broad range of values of the cavity detuni
(2/B21,u,A3) that we have explored. Here we summ
rize these results, and discuss their connection to other
lated studies. In Sec. III we revisited the case of linea
polarized driving field for self-focusing as well as se
defocusing situations. For the self-defocusing case there i
instability leading to a stripe stationary pattern which is o
thogonally polarized to the driving field@18#. However, in-
creasing the intensity of the driving field, the pattern disa
pears, leading to a final homogeneous elliptically polariz
state. The transient dynamics involves the spatial coexiste
of two equivalent elliptically polarized homogeneous sta
separated by moving interfaces, like in a process of ph
separation dynamics@47#. Spatial coexistence of domains o
different structures was reported in Ref.@48# for a liquid
crystal light valve with rotated feedback loop, while statio
ary spatial coexistence of circularly polarized states has b
reported in alkali vapors driven by a linearly polarized fie
in a single mirror system@22# and in cells without mirrors
@20,21#. For a linearly polarized driving field and a sel
focusing situation, there is an instability leading to an he
agonal pattern with the same polarization of the driving fie
@18#. This is the same process as in a scalar model@26,27#.
When the intensity of the driving field is increased, the he
agonal pattern is destabilized@31#. We have observed that
further increase of the driving field intensity leads to a co
plicated spatiotemporal dynamics with bursting spots t
create propagating circular waves. A related phenome
was reported in a model which includes the dynamics
atomic variables@49#.

For an elliptically polarized driving field~Sec. IV! and a
self-defocusing situation, the stripe pattern is converted i
a hexagonal pattern in each of the two independent vecto
components of the electric field. A transition from bright
dark hexagons~or vice versa! in each of the field component
is obtained by changing the ellipticity of the driving field. I

FIG. 16. Time dependence of the amplitudesuAsu2 ~solid line!
and uAhu2 ~dashed line!, corresponding to wave numbersks andkh

on a logarithmic scale. The amplitudes were calculated integra
over a circle of radiusks or kh in Fourier space. The plot shows th
exponential growth of the Hopf modes at short times, the comp
tion between the modes and the final domination of the st
modes.
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addition, the range of parameters~cavity detuning and inpu
intensity! for which a pattern exists shrinks to zero as t
ellipticity departs from its value for a linearly polarized driv
ing field. Beyond a certain ellipticity, the homogeneous
lution, which now is elliptically polarized, never loses stab
ity. The change from stripes or squares to hexagons for
finite ellipticity follows from general symmetry conside
ations also made in Ref.@34# for a Kerr medium with coun-
terpropagating beams. This has been predicted@19# and ob-
served@23# in a Na cell with single feedback mirror. It ha
also been invoked as an explanation of the observation
Ref. @24# for a cell of rubidium vapor in two counterpropa
gating beams. The transition from bright to dark hexagons
changing the ellipticity of a driving field was discussed
Ref. @36# and observed in Ref.@23# for Na vapor with a
single feedback mirror.

For an elliptically polarized driving field and a sel
focusing situation, the field ellipticity is a tuning paramet
that permits one to explore several situations. For a circul
polarized driving field the scalar case is recovered, an
circularly polarized hexagonal pattern emerges. Two part
larly interesting cases for intermediate ellipticity involve d
namical patterns occurring through a Hopf instability a
finite wave numberkh . The first of these instabilities consid
ered in Sec. V leads to a time dependent pattern consistin
deformed dynamical hexagons. The Hopf bifurcation
modified by a linearly damped stationary modeks.kh . The
quadratic resonance of these two modes gives rise to
formed hexagons. The spatiotemporal pattern can be
scribed by a superposition of a triad ofkh Hopf modes, each
one associated with a traveling wave with the same
quency, but one of them having an amplitude different fro
the other two. A second interesting case considered in
VI is a codimension 2 bifurcation in which a stationa
Turing-like instability occurs simultaneously with the Ho
instability. Now the stationary unstable mode is such t
kh.ks , and we do not find quadratic resonance. The tr
sient dynamics involves complicated states with a stro
competition of the Hopf and stationary modes. The final st
is a stationary hexagonal pattern in which the Hopf mo
have died. Dynamical patterns and codimension Turing-H
bifurcations have been considered in related studies. A
case of dynamical hexagons, in a Kerr medium with co
terpropagating beams, was discussed in@34#, but they arise
as a secondary pure Hopf instability. Dynamical hexag
arising from a codimension 2 situation, for alkali vapors w
a single feedback mirror, were considered in Refs.@50,51#.
The difference from the situations we have found is twofo
First, the codimension 2 situation is different from ours b
causeks.kh , so that a mixed Turing-Hopf mode occu
through a quadratic resonances. Second, the dynamical
tern of Refs.@50,51# is different from our deformed dynami
cal hexagons because the Turing-like mode is linearly
stable and therefore appears with a large amplitude. In s
of these differences, we note that the deformation of he
gons in Ref.@51# has an origin similar to ours. The comp
tition of unstable Hopf modes and unstable Turing-li
modes withks.kh was also considered experimentally
Ref. @48# for a large system. By an appropriate control
parameters, either of the two types of modes can domin
Close to the codimension 2 situation, the spatial coexiste
-
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of domains in which one of the two modes dominates w
observed@52#. A codimension 2 bifurcation involving a
Turing-like mode and a Hopf mode, but of zero wave nu
ber (kh50), was also recently considered in an optical pa
metric oscillator with saturable losses@54#.

VIII. CONCLUSIONS

In this paper we have presented a systematic analysis
prototype vectorial model of pattern formation in nonline
optics describing a Kerr medium in a cavity with flat mirro
and driven by a coherent plane-wave field. We have con
ered linearly as well as elliptically polarized driving field
and situations of self-focusing and self-defocusing. We h
described, by numerical simulations, amplitude and mo
equations, a rich variety of phenomena that illustrate the
evance of the polarization degree of freedom in optical s
tiotemporal dynamics. In particular, we have shown that t
degree of freedom allows for new asymmetric homogene
solutions, induces new instabilities, and changes the b
symmetry of the pattern formed beyond an instability.

A particularly relevant aspect of our results is to show th
the ellipticity of the pump can be used as a tuning parame
easily accessible to the experimentalist, that permits on
explore different types of pattern forming instabilities. F
example, we have shown that by changing the ellipticity
find situations which include~i! a modified Hopf bifurcation
at a finite wave number leading to a time dependent pat
of deformed hexagons, and~ii ! a codimension 2 Turing-Hop
instability resulting in an elliptically polarized stationar
hexagonal pattern. Small changes in the ellipticity a
change the symmetry of the pattern, for example from stri
to hexagons. Another general relevant aspect of our resu
that the information on two different patterns is encoded
each of the two independent polarization components, wh
are easily separated by a polarizer. From a fundamental p
of view this opens the possibility to study spatiotempo
correlations between two different patterns emerging fr
the same physical system@14#. Correlations between differ
ent polarization components close to the onset of pat
formation in the model of Ref.@18# were already studied in
Ref. @28#.

We finally mention that vectorial degrees of freedom a
also important in pattern formation in lasers, where vecto
topological defects of the field amplitude can occur if t
rotational symmetry of the system is not broken by a pu
field @12,17,55,56#. Corresponding phenomena should al
exist in other fields such as two-component Bose-Eins
condensates@4#. This calls for a further systematic investiga
tion of vectorial spatiotemporal phenomena, for which
number of experimental results are becoming available.
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